Junior Wiskunde Olympiade Problems part 2

Saturday 1 October 2016
Vrije Universiteit Amsterdam

- The problems in part 2 are open questions. Write down your answer on the form at the indicated spot. Calculations or explanations are not necessary.
- Each correct answer is awarded 3 points. For a wrong answer no points are deducted.
- You are allowed to use draft paper. The use of compass, ruler or set square is allowed. Calculators and comparable devices are not allowed.
- You have 45 minutes to solve these problems. Good luck!

1. All vehicle registration plate numbers in the country Wissewis consist of three two-digit numbers. A plate number is considered beautiful if it has the following two properties:

- it consists of six distinct digits;
- the first number is smaller than the second number and the second number is smaller than the third number.

An example of a beautiful plate number is 03-29-64.
How many beautiful plate numbers are there that have 61 as the first number?
2. Alice, Bob, Carla, Daan, and Eva are standing in this order along a circle (Bob is standing to the left of Alice). Each of them has a number of sweets, they have 100 sweets in total. All at the same time, they give part of their sweets to their left neighbour: Alice gives away $\frac{1}{3}$ of her sweets, Bob $\frac{1}{4}$, Carla $\frac{1}{5}$, Daan $\frac{1}{6}$, and Eva $\frac{1}{7}$. After this, everybody has the same number of sweets as before.
How many sweets does Eva have?
3. In the figure on the right, rectangles $A B C D$ and $B D E F$ are shown. The length of $A B$ is 8 and the length of $B C$ is 5 .
What is the area of pentagon $A B F E D$?

4. In this problem we consider three-digit numbers of which no digit is a zero. Such a number is called a lucky number if:

- the number is divisible by 4 , and
- if you change the order of the three digits, you will still always get a number divisible by 4 .

For example, the number 132 is not a lucky number, because 132 is divisible by 4 , but 231 is not. How many lucky numbers are there?
5. How many times a day (which is 24 hours) are the small hand and the big hand of the clock perpendicular?

6. Janneke, Karin, Lies, Marieke, and Nadine participated in a running race. They all finished at distinct times except for two of them; they finished at the same time. Moreover, we know that:

- at least three runners finished before Janneke;
- after Karin finished but before Lies finished, exactly two others crossed the finish line;
- Marieke was not the first to finish;
- shortly after Nadine finished, Janneke crossed the finish line; nobody else was in-between. Which two runners finished at the same time?

7. For all positive integers a and b we make the number $a \bigcirc b$. The following rules hold:

- rule $1: 1 \bigcirc 1=1$;
- rule 2: $a \bigcirc b=b \bigcirc a$;
- rule 3: $a \odot(b+c)=a+(a \circlearrowright b)+(a \circlearrowright c)$.

From these rules it follows, for example, that

$$
2 \bigcirc 1=1 \bigcirc 2=1 \bigcirc(1+1)=1+1 \bigcirc 1+1 \bigcirc 1=1+1+1=3 .
$$

Calculate $20 \backsim 16$.
8. We create a sequence of numbers. To get the next number in the sequence, we repeatedly do the following:

- if the previous number is odd: multiply this number by itself and add 3 ;
- if the previous number is even: divide this number by 2 .

For example, when we start with 5 , we obtain $5 \times 5+3=28$ as second number and $\frac{28}{2}=14$ as third number in the sequence. As starting number we are allowed to choose any of the numbers from 1 to 1000 .
For how many of these starting numbers will the tenth number in the sequence be smaller than 10 ?

