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Solutions

1. Version for klas 4 & below

First observe that a shuffle number can only contain the digits 2, 4, 6, and 8. Indeed, if we
place the digits in any order, we obtain an even number (since it is divisible by 12) because of
property (3). Since the last digit of an even number is also even, the digit must be 2, 4, 6, or
8 since it cannot be 0 because of property (1). Since we can put any of the digits in the last
position, this holds for each digit of a shuffle number.

Next, observe that a shuffle number can only contain the digits 4 and 8. Indeed, suppose that
we had a shuffle number containing the digit 2. We could reorder the digits so that the last digit
is 2. The last two digits would then be 22, 42, 62, or 82. But then the number would not be
divisible by 4 (and hence also not divisible by 12), contradicting property (3). In the same way
we see that a shuffle number cannot contain digit 6 because a number ending in digits 26, 46, 66,
or 86 is not divisible by 4.

A shuffle number is divisible by 3 (since it is divisible by 12), hence the sum of its digits is
divisible by 3 as well. Since each digit is either 4 or 8, we have the following cases:

• 5 fours and 0 eights. Sum of the digits: 20

• 4 fours and 1 eight. Sum of the digits: 24

• 3 fours and 2 eights. Sum of the digits: 28

• 2 fours and 3 eights. Sum of the digits: 32

• 1 four and 4 eights. Sum of the digits: 36

• 0 fours and 5 eights. Sum of the digits: 40

The 5-digit numbers for which properties (1) and (3) hold, are precisely the numbers that have
4 fours and 1 eight, or have 1 four and 4 eights. It remains to examine which of these eight
numbers are divisible by 11. For this we use the 11-criterion: a number is divisible by 11 if the
alternating sum of the digits is divisible by 11. By alternating sum we mean that instead of
adding them, we alternately add and subtract. For the eight candidate solutions we find the
following alternating sums:

84444 8− 4 + 4− 4 + 4 = 8 48888 4− 8 + 8− 8 + 8 = 4
48444 4− 8 + 4− 4 + 4 = 0 84888 8− 4 + 8− 8 + 8 = 12
44844 4− 4 + 8− 4 + 4 = 8 88488 8− 8 + 4− 8 + 8 = 4
44484 4− 4 + 4− 8 + 4 = 0 88848 8− 8 + 8− 4 + 8 = 12
44448 4− 4 + 4− 4 + 8 = 8 88884 8− 8 + 8− 8 + 4 = 4

We see that there are precisely two 5-digit shuffle numbers, namely 48444 and 44484.



1. Version for klas 5 & klas 6

First observe that a shuffle number can only contain the digits 2, 4, 6, and 8. Indeed, if we
place the digits in any order, we obtain an even number (since it is divisible by 12) because of
property (3). Since the last digit of an even number is also even, the digit must be 2, 4, 6, or
8 since it cannot be 0 because of property (1). Since we can put any of the digits in the last
position, this holds for each digit of a shuffle number.

Next, observe that a shuffle number can only contain the digits 4 and 8. Indeed, suppose that
we had a shuffle number containing the digit 2. We could reorder the digits so that the last digit
is 2. The last two digits would then be 22, 42, 62, or 82. But then the number would not be
divisible by 4 (and hence also not divisible by 12), contradicting property (3). In the same way
we see that a shuffle number cannot contain digit 6 because a number ending in digits 26, 46, 66,
or 86 is not divisible by 4.

A shuffle number is divisible by 3 (since it is divisible by 12), hence the sum of its digits is
divisible by 3 as well. If our 10-digit number has k eights and 10− k fours, then the sum of its
digits is equal to 8k + 4(10− k) = 40 + 4k = 36 + 4(k + 1). This is divisible by 3 if and only if
k + 1 is divisible by 3. That is, if k = 2, k = 5, or k = 8. We see that a shuffle number must
have 2 eights and 8 fours, or 5 eights and 5 fours, or 8 eights and 2 fours. Note that each of
those numbers satisfy (1) and (3). It remains to examine which of these numbers are divisible
by 11 (property (2)).

For this we use the 11-criterion: a number is divisible by 11 if the alternating sum of the digits
is divisible by 11. By alternating sum we mean that instead of adding them, we alternately
add and subtract. Since in our case all digits are equal to 4 or to 8, the alternating sum
must even be divisible by 4 × 11 = 44. Since the alternating sum cannot be greater than
8 + 8 + 8 + 8 + 8− 4− 4− 4− 4− 4 = 20 (and cannot be smaller than −20), it must be equal to
0. In other words: the sum of the five digits in the odd positions must equal the sum of the five
digits in the even positions. This means that the number of digits 8 in the odd positions must
be equal to the number of digits 8 in the even positions. We examine the three cases that we
found before:

• Suppose exactly 2 digits are eights. The only requirement is now that there is exactly 1
eight in the odd positions and exactly 1 eight in the even positions. There are 5× 5 = 25
ways to do this.

• Suppose exactly 5 digits are eights. Since we cannot divide the eights into two equal groups,
there are no solutions in this case.

• Suppose exactly 8 digits are eights. The only requirement is now that we have 4 eights in
the odd positions and 4 eights in the even positions. In other words: 1 odd position must
be a four and 1 even position must be a four. Again we find 5× 5 = 25 possibilities.

We conclude that the total number of 10-digit shuffle numbers is 25 + 25 = 50.



2. Version for klas 5 & klas 4 and below

We first consider the case that 1 is red. Then all numbers from 1 to 25 are red. Indeed, suppose
that some number k is blue. Then 1 and k have different colours, hence by the third rule the
number 1 · k = k must be red. But this contradicts the assumption that it was blue. Observe
that colouring all numbers red indeed gives a correct colouring.

Now consider the case that 1 is blue. Since 5 is not blue, it follows from the second rule that 1
and 4 have the same colour. Hence, 4 is blue. Similarly, 2 and 3 must have the same colour. In
fact, both must be blue since if 2 were red, then 3 = 1 + 2 would have to be blue because of the
second rule.

We now know that 1, 2, 3, and 4 are blue. By the second rule, we see that also 6 = 5 + 1,
7 = 5 + 2, 8 = 5 + 3, and 9 = 5 + 4 are blue. Applying the second rule again, we find in turn
that 11, 12, 13, 14 are blue, that 16, 17, 18, 19 are blue, and that 21, 22, 23, 24 are blue.

Because of the third rule, 10 = 2 · 5, 15 = 3 · 5, and 20 = 4 · 5 are red. Only the colour of 25 is
not yet determined by the rules. We find two possible colourings:

(1) Only 5, 10, 15, 20, 25 (the numbers divisible by 5) are red.

(2) Only 5, 10, 15, 20 are red.

We check that colouring (1) is indeed correct. The second rule is satisfied, because the sum of a
number divisible by 5 and a number not divisible by 5 is itself not divisible by 5. The third rule
is satisfied since the product of a number divisible by 5 and a number not divisible by 5 is itself
divisible by 5.

Colouring (2) differs from colouring (1) only in the colour of 25. To see that colouring (2) is
correct, we only need to check the rules in the situation that one of the numbers involved is 25.
We check that 25 is not the product of a blue and a red number (that is correct). We must also
check that there is no red number k such that 25 + k is red or 25k is blue. That is automatically
true since the numbers greater than 25 are not coloured.

We conclude that there are 3 correct colourings altogether: the colouring in which all numbers
are red, colouring (1), and colouring (2).

2. Version for klas 6

We first consider the case that 1 is red. Then all numbers from 1 to 15 are red. Indeed, suppose
that some number k is blue. Then 1 and k have different colours, hence by the third rule the
number 1 · k = k must be red. But this contradicts the assumption that it was blue. Observe
that colouring all numbers red indeed gives a correct colouring.

Now we consider the case that 1 is blue. Observe that when two numbers sum to 15, those
numbers must have the same colour by the second rule. We get the following pairs of numbers
of the same colour: 1 and 14, 2 and 13, 3 and 12, 4 and 11, 5 and 10, 6 and 9, 7 and 8.

The number 2 is blue. Indeed, suppose that 2 is red. From the second rule, we derive that
3 = 1 + 2 is blue. Repeatedly applying the same rule we find that 5 = 3 + 2 is blue, that 7 = 5 + 2
is blue, and finally that 15 is blue. Since 15 is in fact not blue, 2 cannot be red.

The number 7 is blue. Indeed, suppose that 7 is red. It then follows from the second rule that
8 = 1 + 7 is blue. However, 7 and 8 must have the same colour, so this cannot be the case.

The number 4 is blue. Indeed, suppose that 4 is red. It then follows from the second rule that
11 = 4 + 7 is blue. But 4 and 11 have the same colour, so this cannot be the case.

Recall, that 3 and 12 have the same colour, and so do 6 and 9. In fact, all four numbers must
have the same colour. Indeed, otherwise 9 = 3 + 6 would be blue by the second rule and also
12 = 3 + 9 would be blue by the second rule.

So far, we know that 15 is red, that 1, 2, 4, 7, 8, 11, 13, 14 are blue, that 3, 6, 9, 12 have the same
colour, and that 5, 10 have the same colour. The numbers 3 and 5 cannot both be red, since if 3
is red, 5 = 2 + 3 is blue by the second rule. The three remaining colour combinations for the
numbers 3 and 5 result in the following three colourings:



(1) Only 15 is red.

(2) Only 5, 10, 15 (the numbers divisible by 5) are red.

(3) Only 3, 6, 9, 12, 15 (the numbers divisible by 3) are red.

It is easy to check that all three colourings are indeed correct. We write this out for the third
colouring, the other two can be checked in a similar way. That the sum of a red and a blue
number is always blue follows from the fact that the sum of a number divisible by 3 and a
number not divisible by 3 is itself not divisible by 3. That the product of a blue and a red
number is always red follows from the fact that the product of a number divisible by 3 and a
number not divisible by 3 is itself divisible by 3.

We conclude that there are 4 correct colourings in total: the colouring in which all numbers are
red, and colourings (1), (2), and (3).

3. If we subtract the second equation from the first, we obtain

x2 − z2 = −x + z − (x− z),

which can be rewritten as
(x− z)(x + z) = −2(x− z),

and then simplified further to get

(x− z)(x + z + 2) = 0.

Since x and z must be different, x− z is nonzero and we can conclude that x + z + 2 = 0, hence
z = −x− 2. If we subtract the third equation from the second, we obtain

y2 − x2 = x + 3y − (2x + 2y),

which can be rewritten as
(y − x)(y + x) = 1(y − x),

and then simplified further to get

(y − x)(y + x− 1) = 0.

Since x and y must be different, y − x is nonzero and we can conclude that y + x− 1 = 0, hence
y = 1− x.

If we now substitute y = 1− x and z = −x− 2 in the first equation, we get

x2 + (1− x)2 = −x + 3(1− x) + (−x− 2),

which we can rewrite as
2x2 − 2x + 1 = −5x + 1.

This is a quadratic equation 2x2 + 3x = 0, whose roots are x = 0 and x = −3
2 . In both cases we

can deduce the values of y and z from the formulas y = 1− x and z = −x− 2. This gives the
solutions (x, y, z) = (−3

2 ,
5
2 ,−

1
2) and (x, y, z) = (0, 1,−2).

For these solutions we know that they satisfy the first equation. Since the difference between the
first and the second equation gives zero on both sides (since we chose z = −x− 2), the second
equation is satisfied as well. Because of the choice y = 1− x, also the third equation is satisfied.
We conclude that both solutions indeed satisfy all three equations.



4. Version for klas 4 & below

(a) Because BE is the bisector of ∠ABC, it follows that ∠ABE = ∠CBF . It was given that
∠FCB = ∠EAB. Since the angles in a triangle sum to 180◦, both in triangle ABE and in
triangle CBF , we must also have ∠BFC = ∠BEA. Since ∠BFC and ∠AFE are opposite
angles, we see that ∠AFE = ∠FEA, and hence that triangle AEF is isosceles.

(b) We will show that 4ABF and 4EGA are congruent.

We see that ∠EGA = ∠CDA, since EG and BC are parallel. In the isosceles triangle
ABD, we see that ∠CDA = 1

2(180◦ − ∠ABD), which is equal to 1
2∠ABC (because of the

straight angle). This in turn, is equal to ∠ABF , because BF is the bisector of ∠ABC.
Altogether, we find that ∠EGA = ∠ABF .

Triangle ABD is isosceles, so ∠BAG = ∠CDA. As we just observed, this last angle is
equal to ∠ABF . We have also seen that ∠EGA = ∠ABF . Because the three angles in
triangle GEA sum to 180◦, we get

∠GEA = 180◦ − ∠EGA− ∠EAB − ∠BAG = 180◦ − ∠ABF − ∠FCB − ∠ABF.

Since 2 · ∠ABF = ∠ABC (since BF is the bisector) we thus find that ∠GEA = 180◦ −
∠FCB − ∠ABC = ∠BAC (because the angles in triangle ABC sum to 180◦), hence
∠GEA = ∠BAF .

Using the fact that |AE| = |AF |, which follows from the fact that 4AEF is isosceles,
we can now conclude that 4ABF and 4EGA are congruent. This immediately implies
|AG| = |BF | as required.

A

B

C

D

E

F

G

4. Version for klas 5 & klas 6

See the solution of version for klas 4 & below. There we first prove that triangle AEF is
isosceles as an intermediate step (part (a)).



5. The smallest number of questions that suffices is 32. First we will show a strategy to locate the
prize in only 32 questions.

Start by asking the quizmaster if the prize is behind the left-hand door. Repeat this until you
are sure whether the prize is there or not. You can only be 100% sure when you have received
the same answer 11 times, because the quizmaster can lie a maximum of 10 times. After doing
this, suppose that the quizmaster has lied n times. This means that you have thus far asked
11 + n questions and the quizmaster is entitled to 10− n more lies.

Now ask the quizmaster whether the prize is behind the right-hand door, and keep asking this
until you are 100% sure of the true answer. Since the quizmaster can lie only 10− n more times,
you need at most 2(10− n) + 1 = 20− 2n + 1 questions for this. In total you have now asked
32− n questions. We conclude that with this strategy, 32 questions always suffice.

Having only 31 questions, it is not always possible to locate the prize. We will show how the
quizmaster can make sure of that. At the beginning, as long as you have asked about both doors
at most 10 times, he always answers ‘no’. To keep it simple, we assume that the left-hand door
is the first door that you query for the eleventh time (the other case is completely analogous).
We consider the situation that the prize is not behind the left-hand door (which may happen).
In this case, we show that the quizmaster can make sure that after 31 questions, you cannot tell
whether the prize is behind the middle door or behind the right-hand door.

So far, the quizmaster has been speaking the truth about the left-hand door, and he will continue
to do so: when asked about the left-hand door, he will always answer ‘no’. For the right-hand
door, the quizmaster will keep saying ‘no’ up to and including the tenth time he is asked about
this door. The next ten times he is asked about this door, he will answer ‘yes’. Since you ask
at most 20 questions about the right-hand door (since you already queried the left-hand door
at least 11 times), the quizmaster needs to lie at most 10 times. Whether the prize is behind
the middle door or behind the right-hand door, in both cases the quizmaster gives the same 31
answers. Therefore, you cannot determine the door behind which the prize is located.
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