
Finale Version klas 4 & below

Dutch Mathematical Olympiad
Friday 15 September 2017
Technische Universiteit Eindhoven

• Available time: 3 hours.

• Each problem is worth 10 points. Points can also be awarded to partial solutions.

• Write down all the steps of your argumentation. A clear reasoning is just as important as the final
answer.

• Calculators and formula sheets are not allowed. You can only bring a pen, ruler (set square), compass
and your math skills.

• Use a separate sheet for each problem and also hand in your draft sheets (for each problem
separately!). Good luck!

1. We consider positive integers written down in the (usual) decimal system. Within such an
integer, we number the positions of the digits from left to right, so the leftmost digit (which is
never a 0) is at position 1.

An integer is called even-steven if each digit at an even position (if there is one) is greater than
or equal to its neighbouring digits (if these exist).

An integer is called oddball if each digit at an odd position is greater than or equal to its
neighbouring digits (if these exist).

For example, 3122 is oddball but not even-steven, 7 is both even-steven and oddball, and 123 is
neither even-steven nor oddball.

(a) Prove: every even-steven integer greater than 9 can be obtained by adding two oddball
integers.

(b) Prove: there exists an oddball integer greater than 9 that cannot be obtained by adding
two even-steven integers.
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A parallelogram ABCD with |AD| = |BD| has been given. A point E lies
on line segment BD in such a way that |AE| = |DE|. The (extended) line
AE intersects line segment BC in F .
Prove that ∠CDF = ∠ADB.

3. Six teams participate in a hockey tournament. Each team plays exactly once against each other
team. A team is awarded 3 points for each game they win, 1 point for each draw, and 0 points
for each game they lose. After the tournament, a ranking is made. There are no ties in the list.
Moreover, it turns out that each team (except the very last team) has exactly 2 points more
than the team ranking one place lower.
Prove that the team that finished fourth won exactly two games.

PLEASE CONTINUE ON THE OTHER SIDE



4. If we divide the number 13 by the three numbers 5, 7, and 9, then these divisions leave remainders:
when dividing by 5 the remainder is 3, when dividing by 7 the remainder is 6, and when dividing
by 9 the remainder is 4. If we add these remainders, we obtain 3 + 6 + 4 = 13, the original
number.

(a) Let n be a positive integer and let a and b be two positive integers smaller than n. Prove:
if you divide n by a and b, then the sum of the two remainders never equals n.

(b) We consider integers n > 229 having the following property: if you divide n by 99, 132,
and 229, then the sum of the three remainders is n.
Prove that for such an integer n the two remainders obtained when dividing n by 99 and
132 add up to 229.

(c) Determine all integers n > 229 having the property that if you divide n by 99, 132, and
229, the sum of the three remainders is n.

5. The eight points below are the vertices and the midpoints of the sides of a square. We would
like to draw a number of circles through the points, in such a way that each pair of points lie on
(at least) one of the circles.
Determine the smallest number of circles needed to do this.
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