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Solutions

1. (a) For brevity, we will say that a number encircled in red is a red number, and similarly for
blue. So some numbers could be both red and blue. Since there are 999 numbers written
on the pavement, of which 500 are red and 500 are blue, we have at least one bicoloured
number by the pigeonhole principle. Consider such a bicoloured number and suppose it is
the number k. From left to right, the red numbers form the sequence 1, 2, . . . , 500. Hence,
to the left of the bicoloured number we have the red numbers 1 to k − 1, and to the right
we have the red numbers k + 1 to 500. The blue numbers are written in the opposite order:
from left to right they form the sequence 500, 499, . . . , 1. To the left of the bicoloured
number we therefore have the blue numbers k + 1 to 500, and to the right we have the blue
numbers 1 to k − 1.

We count how many numbers there are on each side of the bicoloured number. On the left
we have the red numbers 1 to k − 1 and the blue numbers k + 1 to 500. Hence, there are
at least 499 distinct numbers on the left. On the right we have the red numbers k + 1 to
500 and the blue numbers 1 to k − 1. Again at least 499 distinct numbers. Since there
are only 999 = 499 + 1 + 499 numbers on the pavement, we have already considered all
numbers on the pavement. We conclude that there are precisely 499 numbers on each side
of the bicoloured number. The bicoloured number is therefore precisely in the middle of
the sequence.

(b) Just as in part (a), the pigeonhole principle yields that at least one number is bicoloured,
i.e. both red and green. If more than one number is bicoloured, one of them is not exactly
in the middle of the sequence and we are done. Therefore, it suffices to examine the case
where there is exactly one bicoloured number. Let this number be equal to k.

Again, we count how many numbers there are on each side of the bicoloured number. On
the left we have the red numbers 1 to k− 1 and the green numbers 1 to k− 1. Since none of
these numbers is bicoloured, there are at least 2 · (k − 1) distinct numbers on the left. On
the right we have the red numbers k + 1 to 500 and the green numbers k + 1 to 500. Since
none of these numbers is bicoloured, we have at least 2 · (500− k) distinct numbers on the
right. Since 2 · (k − 1) + 1 + 2 · (500− k) = 999, we have already counted all numbers.

On the left of the bicoloured number we therefore have exactly 2 · (k − 1) numbers, and on
the right we have exactly 2 · (500− k) numbers. Since 2 · (k − 1) is an even number, it is
unequal to 499. We conclude that the bicoloured number is not exactly in the middle of
the sequence.

2. Suppose that our sequence has x ones, y minus ones (and hence 2n−x− y zeroes). We calculate
the sum product value of the sequence (as an expression in x and y).

In the sum product value, six different types of terms occur: 1 · 1, 1 · −1, −1 · −1, 1 · 0, −1 · 0,
and 0 · 0. Only the first three types contribute since the other types are equal to 0.

The number of terms of the type 1 · 1 = 1 equals the number of ways to select two out of x ones.
This can be done in x(x−1)

2 ways: there are x options for the first 1, and then x− 1 options for
the second 1. Since the order in which we select the two ones does not matter, we effectively
count each possible pair twice.

Similarly, the number of terms of the type −1 · −1 = 1 is equal to y(y−1)
2 .

The number of terms of the type 1 ·−1 = −1 is equal to xy, since there are x options for choosing
a 1 and, independently, there are y options for choosing a −1.



In total, we obtain a sum product value of

S =
x(x− 1)

2
· 1 +

y(y − 1)

2
· 1 + xy · −1 =

x2 − 2xy + y2 − x− y

2
=

(x− y)2 − (x + y)

2
.

Since (x− y)2 > 0 (squares are non-negative) and −(x + y) > −2n (there are only 2n numbers
in the sequence), we see that S > 0−2n

2 = −n. So the sum product value cannot be smaller than
−n. If we now choose x = y = n, then (x − y)2 = 0 and −x − y = −2n, which imply a sum
product value of exactly 0−2n

2 = −n. Therefore, the smallest possible sum product value is −n.

3. The problem is symmetric in a, b, and c. That is, if we consistently swap a and b, or a and c, or
b and c, then the conditions on (a, b, c) do not change. We will therefore consider solutions for
which a 6 b 6 c. The remaining solutions are then found by permuting the values of a, b, and c.

Since a and b are positive, we see that a+ b+ c > c. Since c is largest among the three numbers,
we also have a + b + c 6 3c. Since we are given that a + b + c is a multiple of c, we are left
with two possibilities: a + b + c = 2c or a + b + c = 3c. We consider both cases separately. If
a + b + c = 3c, then a, b, and c must all be equal, because otherwise, the fact that a, b 6 c
implies that a + b + c < 3c. This means that gcd(b, c) = gcd(c, c) = c. Since gcd(b, c) must be
equal to 1, we find (a, b, c) = (1, 1, 1). This is indeed a solution, since gcd(1, 1) = 1 and 1 is a
divisor of 1 + 1 + 1.

If a + b + c = 2c, then c = a + b. We know that b must be a divisor of a + b + c = 2a + 2b. Since
a > 0, we have 2a + 2b > 2b. Since b > a, we also have 2a + 2b 6 4b. Therefore, since 2a + 2b
must be a multiple of b, there are only two possibilities: 2a+ 2b = 3b or 2a+ 2b = 4b. Again, we
consider these cases separately.

If 2a+2b = 3b, then b = 2a. Similarly to the first case, we find that a = gcd(a, 2a) = gcd(a, b) = 1.
Therefore, b = 2 and c = a + b = 3. The resulting triple (a, b, c) = (1, 2, 3) is indeed a solution,
since gcd(1, 2) = gcd(1, 3) = gcd(2, 3) = 1 and 1 + 2 + 3 = 6 is divisible by 1, 2, and 3.

If 2a + 2b = 4b, then a = b. Again we see that a = gcd(a, a) = gcd(a, b) = 1. From b = a = 1
it follows that c = a + b = 2 and hence (a, b, c) = (1, 1, 2). This is indeed a solution since
gcd(1, 1) = gcd(1, 2) = 1 and 1 + 1 + 2 = 4 is divisible by 1 and 2.

We conclude that the solutions for which a 6 b 6 c holds are: (a, b, c) = (1, 1, 1), (a, b, c) =
(1, 1, 2), and (a, b, c) = (1, 2, 3). Permuting the values of a, b and c, we obtain a total of ten
solutions (a, b, c):

(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).
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[Version klas 5 & klas 4 and below] Let K be the intersection
of AX and BD, and let L be the intersection of CY and BD.
Consider the triangles PLY and PKX. The angles ∠PLY and
∠PKX are both right angles. The angles ∠Y PL and ∠XPK
are opposite angles and therefore equal. Since |PX| = |PY |, we
see that triangles PKX and PLY are congruent (SAA). Hence,
|PK| = |PL|.
Now consider triangles PAK and PCL. Angles ∠AKP and ∠CLP
are both right angles. Angles ∠KPA and ∠LPC are opposite
angles, hence equal. We have already shown that |PK| = |PL|.
Therefore, triangles PAK and PCL are congruent (ASA). From this, we conclude that |AP | =
|PC|.
In a similar fashion, we may deduce that |BP | = |DP |. The two diagonals of ABCD bisect
each other, hence ABCD is a parallelogram.
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[Version klas 6] We start by observing that ∠CMY = 1
2∠CMA =

1
2(180◦ −∠AMB) = 90◦ −∠XMB. Since ∠MXB = 90◦, and the
angles of triangle BMX sum to 180◦, we see that ∠CMY =
90◦ − ∠XMB = ∠MBX.

Looking at triangles CMY and MBX, we observe that ∠CMY =
∠MBX, ∠MYC = 90◦ = ∠BXM , and |CM | = |MB|. The two
triangles are therefore congruent (SAA). In particular, we obtain
the equalities |MX| = |CY | and |MY | = |BX|.
Now consider triangle XYM . We already know that |MY | = |BX| and that ∠YMX =
∠YMA + ∠AMX = 1

2∠CMA + 1
2∠AMB = 1

2 · 180◦ = 90◦. Since triangles XYM and MBX
also share the side MX, they are congruent (SAS).

In particular, we see that ∠MXY = ∠XMB. Since MX is the angle bisector of ∠AMB, we
have ∠XMB = ∠AMX. This implies that triangle MXZ has two equal angles and is therefore
an isosceles triangle with vertex angle Z. We conclude that |MZ| = |XZ|.
In a similar manner, we see that triangles XYM and CMY are congruent, and find that
∠XYM = ∠CMY = ∠YMA. Triangle MY Z is therefore isosceles with vertex angle Z. This
implies that |Y Z| = |MZ|. Together with |MZ| = |XZ|, this concludes the proof.

5. Suppose that not all numbers are coloured blue. Then, there must be a number k that is not
blue. We will use this to derive a contradiction.

Without loss of generality, we may assume that k is coloured red. Since all odd numbers are
blue, k must be even, say k = 2m for some integer m > 1. From the second requirement, it
follows that 8m is red as well. From the third requirement, it now follows that at least one of
the numbers 8m+ 2 and 8m+ 4 is red. However, 2m+ 1 is odd and therefore blue, which by the
second requirement implies that 8m + 4 = 4 · (2m + 1) is blue as well. So 8m + 2 must be red.

By the third requirement, 8m− 2 must be the same colour as 8m or 8m+ 2. Since both 8m and
8m + 2 are red, this implies that 8m− 2 must be red as well. Since 8m and 8m− 2 are red, this
implies (again by the third requirement) that 8m− 4 is also red. The second requirement now
implies that (8m− 4)/4 = 2m− 1 is also red. But that is impossible since 2m− 1 is odd, and
therefore blue.

We conclude that the assumption that not all numbers are blue leads to a contradiction. Therefore,
all numbers must be blue.
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