Nederlandse Wiskunde Olympiade voor Bedrijven

Friday, 27 January 2023

- Available time: 20 minutes.
- For this "uitsmijter" only an answer is required, no calculation or proof. A correct and complete answer is worth 10 points. For an answer that is not complete or not completely correct you may also get some points.
- All answers should be given in exact and simplified form, like $\frac{11}{81}, 2+\frac{1}{2} \sqrt{5}, \frac{1}{4} \pi+1$, or 3^{100}.
- Formula sheets and calculators are not allowed. You can only use a pen, compass, ruler or set square and of course your mental skills.
- Good luck!

$$
\text { For the contest managers: Score first round: } \quad \text { Score uitsmijter: }
$$

Name:

Company:

Uitsmijter

The circle c_{1} has radius 4 and is tangent to the line ℓ with point of tangency R.
The circle c_{2} has radius 9 , is tangent to c_{1}, and is tangent to ℓ with point of tangency S.
The circle c_{3} is tangent to the circles c_{1} and c_{2}, and is tangent to ℓ with point of tangency T, with T in between R and S.
See the picture on the right. (It is not drawn to scale.)

Let r be the radius of the circle c_{3}. In this problem, we are going to compute r.

Answer:
a) Compute $|R S|$ (the length of $R S$).
a)
b) There exists a number c such that $|R T|^{2}=c \cdot r$.

Compute c.

b)
c) Compute r.
c)

