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Introduction

The selection process for IMO 2018 started with the first round in January
2017, held at the participating schools. The paper consisted of eight multiple
choice questions and four open questions, to be solved within 2 hours. In
this first round 10529 students from 340 secondary schools participated.

The 987 best students were invited to the second round, which was held in
March at twelve universities in the country. This round contained five open
questions, and two problems for which the students had to give extensive
solutions and proofs. The contest lasted 2.5 hours.

The 124 best students were invited to the final round. Also some outstanding
participants in the Kangaroo math contest or the Pythagoras Olympiad
were invited. In total about 160 students were invited. They also received
an invitation to some training sessions at the universities, in order to prepare
them for their participation in the final round.

The final round in September contained five problems for which the students
had to give extensive solutions and proofs. They were allowed 3 hours for
this round. After the prizes had been awarded in the beginning of November,
the Dutch Mathematical Olympiad concluded its 56th edition 2017.

The 30 most outstanding candidates of the Dutch Mathematical Olympiad
2017 were invited to an intensive seven-month training programme. The
students met twice for a three-day training camp, three times for a single
day, and finally for a six-day training camp in the beginning of June. Also,
they worked on weekly problem sets under supervision of a personal trainer.

In February a team of four girls was chosen from the training group to
represent the Netherlands at the EGMO in Florence, Italy, from 9 until 15
April. The team brought home a silver medal, two bronze medals, and a
honourable mention; a very nice achievement. For more information about
the EGMO (including the 2018 paper), see www.egmo.org.

In March a selection test of three and a half hours was held to determine the
ten students participating in the Benelux Mathematical Olympiad (BxMO),
held in Mersch, Luxemburg, from 27 until 29 April. The Dutch team
received a gold medal, four silver medals and three bronze medals, and
managed to get the highest total score of the Benelux countries, beaten only
by guest country France. For more information about the BxMO (including
the 2018 paper), see www.bxmo.org.



In June the team for the International Mathematical Olympiad 2018 was
selected by three team selection tests on 7, 8 and 9 June 2018, each lasting
four hours. A seventh, young, promising student was selected to accompany
the team to the IMO as an observer C. The team had a training camp in
Cluj-Napoca, from 30 June until 6 July.

For younger students the Junior Mathematical Olympiad was held in Oc-
tober 2017 at the VU University Amsterdam. The students invited to
participate in this event were the 100 best students of grade 2 and grade 3
of the popular Kangaroo math contest. The competition consisted of two
one-hour parts, one with eight multiple choice questions and one with eight
open questions. The goal of this Junior Mathematical Olympiad is to scout
talent and to stimulate them to participate in the first round of the Dutch
Mathematical Olympiad.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition

of this booklet and the translation into English of most of the problems and
the solutions.

Dutch delegation

The Dutch team for IMO 2018 in Romania consists of

e Nils van de Berg (18 years old) e Jovan Gerbscheid (15 years old)
— bronze medal at BxMO 2017 — silver medal at BxMO 2018
— gold medal at BxMO 2018 e Jippe Hoogeveen (15 years old)

— hon. mention at IMO 2017 e Matthijs van der Poel (17 years old)

* Szabi Buzogany (18 years old) — bronze medal at BxMO 2016

— silver medal at BxMO 2018 _ bronze medal at BxMO 2017
e Thomas Chen (17 years old) — observer C at IMO 2016

— gold medal at BxMO 2017 — silver medal at IMO 2017
— silver medal at BxMO 2018

We bring as observer C the promising young student

e Richard Wols (15 years old)
— bronze medal at BxMO 2018

The team is coached by
e Quintijn Puite (team leader), Eindhoven University of Technology
e Birgit van Dalen (deputy leader), Leiden University
e Jetze Zoethout (observer B), Utrecht University



First Round, January 2017

Problems

A-problems

. In a certain year, August has only 4 Mondays and 4 Fridays.
Which day of the week was 31 August that year?

A) Tuesday B) Wednesday C) Thursday
D) Saturday E) Sunday

. We consider dotted hexagons with 1,2, 3,... dots on each side,
see also the picture. The number of dots in such a hexagon is oo
called a hexagonal number. The first hexagonal number is 1,  °®_.°*.°*

the second is 7, and the third is 19. ° e
Which of the following numbers is also a hexagonal number? ol
A) 81 B) 128 C) 144 D) 169 E) 187 AR

. Five suspects are arrested in a criminal investigation. Each of them makes
one statement:

Eva: “We are all innocent.”

Fatima: “Exactly one of us is innocent.”

Kees: “Exactly one of us is guilty.”

Manon: “At least two of us are innocent.”

Mustafa: “At least two of us are guilty.”
It turns out that those who are guilty lied, while those who are innocent
told the truth. How many of the five suspects are guilty?
A)l B) 2 Q)3 D) 4 E)5

. Two regular hexagons share a side and are situated
inside a parallelogram as indicated in the figure. The
area of the parallelogram equals 1.

What is the area of the two grey areas combined?

A) 3 B) Q) 5 D) 2 E)

1
2



5. In the expression below, the ten dots are replaced by ten distinct digits
(0 to 9) in such a way that none of the resulting two-digit numbers starts
with 0:

What is the largest possible outcome we can obtain?
A) 255 B) 242 C) 116 D) 222 E) 255

6. A 100x 100 table is filled with numbers. The bottom
left cell contains the number 0. For every other cell

V', we consider a route from the bottom left cell to V| 317115

where in each step we go one cell to the right or one 1131 7

cell up (not diagonally). If we take the number of ol11 3
steps and add the numbers from the cells along the

route, we obtain the number in cell V. In the figure, you see a partially filled
table. The number 15, for example, is obtained as 4+ (0+ 143+ 7) = 15.
What is the last digit of the number in the upper right cell of the 100x 100
table?

A) 1 B) 3 Q)5 D) 7 E) 9

7. Rectangle ABCD is divided into squares. The length of side AB is 16.

D, C

A B

What is the length of side AD?

A) 13 B) & C) 14 D) E) 15

8. Joep assigns the numbers 1 to 8 to the vertices of a cube (each vertex
receiving a number different from the other vertices). For each face of the
cube he adds the four numbers assigned to the vertices of that face and
writes the resulting number on the face. Then, he cuts the cube open along
some of the sides and flattens it out to obtain one of the five figures given
below. Only one of these figures could represent Joep’s cube.



17] 18 17] 27 18
[16[18]20[17] 18[18[18[20 202616 16[12[20[24] 18[18]18
19 L6} 1L0] 19 o 18[18

Which figure could represent Joep’s cube?

A) the first B) the second C) the third
D) the fourth E) the fifth
B-problems

The answer to each B-problem is a number.

. Isaac writes down a three digit number. None of its digits is a zero. Isaac
gives his sheet with the number to Dilara, and below Isaac’s number she
writes down all three digit numbers that one can obtain by putting the
digits of Isaac’s number in a different order. Then she adds up all numbers
on the sheet. The outcome is 1221.

What is the greatest number that Isaac could have written down?

. There are two triples (a, b, c) of positive integers that satisfy the equations

ab+c = 34,
a+bc = 29

Which two triples are these?

. Triangle ABC'is an isosceles right angled triangle whose
right angle is at C, with |AC| = |BC| = 12. Point M
is the midpoint of side AB. A point D lies on side AC. M
Finally, point F is the intersection point of line segments
CM and BD, see the figure. E
If |CD| = 3, what is the area of quadrilateral AM ED?

C D

. At a quiz you have to answer 10 questions. Each question is either difficult
or easy. For a difficult question 5 points are being awarded for a correct
answer and —1 point for an incorrect answer; for an easy question 3 points
are being awarded for a correct answer and —1 point for an incorrect answer.
Moreover, if you answer a question correctly, then the next question will be
a difficult one; if you answer a question incorrectly, then the next question
will be an easy one. You start with a difficult question.

How many distinct final scores are possible after 10 questions?



Solutions

A-problems

1. C) Thursday 5.
2. D) 169 6.
3. Q3 7
4. E)3 8.
B-problems

1. 911

2. (13,2,8) and (5,6,4)
3. 62

4. 27

E) the fifth



Second Round, March 2017

Problems

B-problems

The answer to each B-problem is a number.

. A finite sequence of consecutive positive integers is called balanced if it
contains equally many multiples of three and multiples of five. An example
of a sequence of length 7 that is not balanced is 30, 31, 32, 33, 34, 35, 36,
because this sequence contains 3 multiples of three (namely 30, 33, and 36)
and just 2 multiples of five (namely 30 and 35).

What is the maximal length of a balanced sequence of consecutive positive
integers?

. The area of a given triangle ABC equals 40. F
Point D on side AB satisfies |[BD| =3 - |AD|.

Point E on side BC satisfies |CE| = 3 - |BE|.

Point F on side CA satisfies |AF| = 3-|CF|. B
Determine the area of triangle DEF'.

A D

. In math class, a student has written down a sequence of 16 numbers on
the blackboard. Below each number, a second student writes down how
many times that number occurs in the sequence. This results in a second
sequence of 16 numbers. Below each number of the second sequence, a third
student writes down how many times that number occurs in the second
sequence. This results in a third sequence of numbers. In the same way,
a fourth, fifth, sixth, and seventh student each construct a sequence from
the previous one. Afterwards, it turns out that the first six sequences are
all different. The seventh sequence, however, turns out to be equal to the
sixth sequence.

Give one sequence that could have been the sequence written down by the
first student.



4. A parallelogram ABCD is intersected by a line
m. From each of the four vertices A, B, C, and
D we draw a perpendicular to m. The four
feet are P, @, R, and S, respectively. Point S
is also the intersection of line m and AB. The
lengths of line segments AP, BQ, and DS are
6, 7, and 25, respectively.
What is the length of CR?
Be careful: the figure is not drawn to scale.

5. Simon has 2017 blue blocks that are numbered from 1 up to and including
2017. He also has 2017 yellow blocks that are numbered from 1 up to and
including 2017. Simon wants to arrange his 4034 blocks in a row, in such a
way that, for every k =1,2,...,2017, the following conditions are met:

e to the left of blue block number k there are k or more yellow blocks;
e to the right of yellow block number k there are k or fewer blue blocks.

Determine all possible numbers for the 1000th block from the left in the
row.

C—problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

1. You have 1000 tiles of each of the following five types:

1 0 1 1 1 0 1 1 0 O 0 0
A B C D E
0 1 0 1 1 1 0 1 0 1 O 0 1

You want to form a row of tiles such that the same sequence of zeroes and
ones is formed on the top and the bottom. We will call this a matching
combination. Consider, for example, the row ‘DDC’ consisting of three tiles
of types D, D, and C, in that order. The top sequence is 1001001, while
the bottom sequence is 010010101. Since the two sequences are not the
same, the row of tiles is not a matching combination.

(a) Construct a matching combination using only tiles of type A, B, and

C.



(b) Show that no matching combination using only tiles of types B, C,
and D exists.

(¢) Does a matching combination using only tiles of types B, C, D, and E
exist?
If so, give an example. If not, prove that such a combination does not
exist.

2. A multi-square is a number obtained by concatenating two or more square
two-digit numbers. (A two-digit number is not allowed to start with digit
0). For example, since 16 and 25 are squares, 1625 is a multi-square.

(a) Determine all four-digit multi-squares whose first and last digit are
equal.

(b) Determine all six-digit multi-squares that are themselves squares.



Solutions

B-problems
1. 11
35
2. B
3. Multiple solutions, e.g.: 0, 1, 2,2, 4,4,4,4,8,8,8,8,8,8, 8,8
4. 12
5. 500
C-problems
C1. (a) A matching combination is ‘BABC’ having a top row and bottom row

(b)

equal to 1101011101.
All other solutions are of the form ‘BABCBABC... BABC".

Suppose that we have a matching combination using only tiles of types
B, C, and D.

The top row of these tiles always starts with a 1. In a matching
combination, the bottom row must therefore start with a 1 as well.
This rules out the first tile being of type D. Type C is ruled out as
well, since otherwise the second tile must have a top row starting with
0. The first tile of a matching combination must therefore be of type
B.

The next tile must have a bottom row starting with 0. Hence, it must
be of type D. After that, we again require a tile with a bottom row
starting with a 0. That is, we again require a tile of type D. This
continues indefinitely. After depleting our supply of 1000 tiles of type
D, we still need another tile having a bottom row starting with a 0. It
follows that we cannot complete our row to a matching combination:
a contradiction.

We conclude that there is no matching combination using only tiles of
types B, C, and D.

The proof of part (c) will give an alternative proof for part (b).

First, consider the number of 1’s in the top row and bottom row of
each type of tile. Tiles of type B, D, and E have equal numbers of

10



C2.

1’s in the top and bottom row. Tiles of type C have more 1’s in the
bottom row than in the top row. Since a matching combination must
have equal numbers of 1’s in both rows, it cannot contain tiles of type
C.

A matching combination can therefore only contain tiles of types B,
D, and E. Tiles of type D have an equal number of digits in the top
row and bottom row (three digits). In contrast, tiles of type B and
E have more digits in their top row than in their bottom row. Since
any matching combination has equal numbers of digits in both rows,
it can contain tiles of neither type B nor type E.

A matching combination can therefore only contain tiles of type D.
But that is also not possible since tiles of type D have a top row
starting with 1 and a bottom row starting with 0. We conclude that
no matching combination exists containing only tiles of types B, C, D,
and E.

No two-digit square ends in a 2, 3, 7, or 8. Also, no two-digit square
starts with a 5 or 9. Hence, we only need to consider multi-squares
with first and last digit equal to 1, 4, or 6.

In the case that the first and last digit are 1, the first square must be 16
and the second square must be 81. This yields the multi-square 1681.
In the case that the first and last digit equal 4, the first square must
be 49 and the second square must be 64. This yields the multi-square
4964. In the case that the first and last digit equal 6, the first square
must be 64 and the second square must be 16 or 36. This yields two
multi-squares: 6416 and 6436.

In total, there are four multi-squares having the same first and last
digit: 1681, 4964, 6416, and 6436.

Let K be a six-digit multi-square, say K = abcdef, where a, b, ¢, d,
e, and f are the six digits of K. The fact that K is a multi-square
means that ab, cd, and ef are two-digit squares, hence equal to 16,
25, 36, 49, 64, or 81. We want K to be a square, say K = n?. To
determine all solutions, we consider the different cases for ab.

Since K > 160000, we must have n > 400. Write n =

400 + x, where z is a positive integer. We have K = (400 + )% =
160000+-800x+x2. Since K < 170000, it follows that 8002 < 10000
and therefore z < 12.

Observe that the last two digits ef of K = 160000 + 800z + x>
are equal to the last two digits of #2. Since the last two digits
of 102 = 100, 112 = 121, and 122 = 144 do not form a square,

11



the candidates x = 10, 11,12 are ruled out. Since 12 =1, 22 = 4,
and 3% = 9 have only one digit, also the candidates z = 1,2, 3 are
ruled out.

We consider the remaining candidates z = 4,5,6,7,8,9. In these
cases, x2 is a two-digit number, which implies that c¢d = 8- 2. This
is a square only in the case z = 8. Hence, we find one solution:
4082 = 166464.

Similarly to the previous case, we can write n = 500 + z,
where  is a positive integer. We have K = (500 + x)? = 250000 +
1000z + 22. Since K < 260000, it follows that 10002 < 10000 and
hence x < 9.

We observe that for every possible choice of x, the digit d of K
will be equal to 0. Hence, there are no solutions.

We write n = 600 4 x, where x is a positive integer. We

have K = (600 + x)? = 360000 + 1200z + 2. Since K < 370000,
it follows that 1200z < 10000 and hence x < 8. Also, we have
x > 4 as otherwise digit e will be equal to 0.

For the remaining candidates @ = 4, 5,6, 7,8 we obtain cd = 12- .
However, this is not a square for any of the possible choices for .
Hence, there are no solutions.

We write n = 700 4 x, where x is a positive integer. We

have K = (7004 )% = 490000 + 1400z 4+ 22. Since K < 500000, it
follows that 1400z < 10000 and hence x < 7. As in the previous
case, we also have x > 4 because digit e cannot be 0.

For the remaining candidates x = 4,5,6,7 we see that cd = 14 - x
is not a square. Hence, there are no solutions.

We write n = 800 + x, where z is a positive integer. We

have K = (800 + z)? = 640000 + 1600z + z2. Since K < 650000,
it follows that 1600z < 10000 and hence x < 6. Again, we also
have x > 4.

Of the remaining candidates = = 4, 5,6, the number cd = 16 - z is
a square only for = 4. Thus we find one solution 8042 = 646416.

We write n = 900 4 x, where x is a positive integer. We

have K = (900 + x)? = 810000 + 1800z + 22. Since K < 820000,
it follows that 1800z < 10000 and hence x < 5. Again we also
have z > 4.

For the remaining candidates x = 4, 5, the number cd = 18 - z is
not a square. Hence, there are no solutions.

We conclude that, in total, there are two six-digit multi-squares that
are themselves a square: 166464 and 646416.

12



Final Round, September 2017

Problems

. We consider positive integers written down in the (usual) decimal system.
Within such an integer, we number the positions of the digits from left to
right, so the leftmost digit (which is never a 0) is at position 1.

An integer is called even-steven if each digit at an even position (if there is
one) is greater than or equal to its neighbouring digits (if these exist).

An integer is called oddball if each digit at an odd position is greater than
or equal to its neighbouring digits (if these exist).

For example, 3122 is oddball but not even-steven, 7 is both even-steven
and oddball, and 123 is neither even-steven nor oddball.

(a) Prove: every oddball integer greater than 9 can be obtained by adding
two oddball integers.

(b) Prove: there exists an oddball integer greater than 9 that cannot be
obtained by adding two even-steven integers.

. A parallelogram ABC'D with |AD| = |BD| has been D

given. A point E lies on line segment BD in such

a way that |[AE| = |DE|. The (extended) line AE

intersects line segment BC' in F. Line DF is the F
angle bisector of angle CDFE.

Determine the size of angle ABD.
A B

. Six teams participate in a hockey tournament. Each team plays exactly
once against each other team. A team is awarded 3 points for each game
they win, 1 point for each draw, and 0 points for each game they lose. After
the tournament, a ranking is made. There are no ties in the list. Moreover,
it turns out that each team (except the very last team) has exactly 2 points
more than the team ranking one place lower.

Prove that the team that finished fourth won exactly two games.

. If we divide the number 13 by the three numbers 5, 7, and 9, then these
divisions leave remainders: when dividing by 5 the remainder is 3, when
dividing by 7 the remainder is 6, and when dividing by 9 the remainder is 4.
If we add these remainders, we obtain 3 + 6 + 4 = 13, the original number.

13



(a) Let n be a positive integer and let a and b be two positive integers
smaller than n. Prove: if you divide n by a and b, then the sum of
the two remainders never equals n.

(b) Determine all integers n > 229 having the property that if you divide
n by 99, 132, and 229, the sum of the three remainders is n.

5. The eight points below are the vertices and the midpoints of the sides of a
square. We would like to draw a number of circles through the points, in
such a way that each pair of points lie on (at least) one of the circles.
Determine the smallest number of circles needed to do this.

14



Solutions

1. An integer for which the digits (from left to right) are ¢, ¢a,. .., cx will be
denoted by ¢1¢3 ... ¢k.

(a)

Let n = ¢1¢3 .- ¢x be an oddball integer greater than 9 (hence k > 2).
We will show that n is indeed the sum of two oddball integers.

If ¢co > 1, then we can write n as the sum of the following two oddball
integers: 10...0 (k — 2 zeros) and ¢;1(c2—1)cs . . . .

If co =0 and ¢; > 2, then we can write n as the sum of the following

two oddball integers: 10...0 (k — 1 zeros) and (¢;—1)cacs .. . ck.

If n =10...0, then we can write n as the sum of the following two
oddball integers: 1 and 9...9 (k — 1 nines).

The last case is the case in which ¢; = 1, co = 0 and not all digits
cs3, ..., are equal to 0. Let ¢; be a digit unequal to 0, with ¢ > 3 as
small as possible. Hence, n = 10...0c¢; ...c, with ¢; > 1.

Because n is oddball and ¢;_1 = 0 < 1 < ¢;, we find that ¢ must be
odd. We can now write n as the sum of the integers 10...0 (k — 1
zeros) and m = ¢i¢ry1 - .- Ck. Because t is odd, the digits at the odd
positions of m are also at odd positions of n. Therefore, these digits

are greater than or equal to their neighbouring digits (because n is
oddball), which yields that m is oddball.

The integer n = 109 is oddball, but it is not the sum of two even-steven
integers. We will prove this by contradiction. Suppose that n = p + ¢
for some even-steven integers p and ¢. We will show that this leads to
a contradiction.

First observe that the integers 100 to 108 are not even-steven. Hence,
both p and ¢ must be smaller than 100, and hence both are also greater
than 9. In other words, p and g have exactly two digits. Suppose
p = ab and g = cd. The equation p + ¢ = 109 now yields b +d = 9
(because b+ d < 19) and a + ¢ = 10. Hence, b+ d < a + ¢, which
implies that either b < a or d < ¢ (or both). In the first case p is
not even-steven and in the second case ¢ is not even-steven. This
contradicts the assumption that p and ¢ are even-steven.

We conclude that the oddball integer 109 cannot be written as the
sum of two even-steven integers.

15



2. Since AED is an isosceles triangle, angles D
/ZEDA and ZDAE are equal. In turn, these
angles are equal to angles /ZEBF and /BFFE
(alternate interior angles). This implies that
triangle BF'F is isosceles as well, with | BE| =
Comparing triangles ABE and DFE, we see
that |[AF| = |DE| and |BE| = |FE|. Since
/BFEA and ZFED are a pair of opposite
angles, they have the same size. It follows
that triangles ABE and DFE are congruent 4 B
(SAS).
From the fact that ABE and DFE are congruent it follows that [DF| =
|AB|. Since ABCD is a parallelogram, we also have |AB| = |CD|. It
follows that triangle CDF is isosceles as well (with apex D).

On the one hand, this implies that ZFCD = ZDF(C. On the other hand,
we know that triangle DBC' is isosceles (since |[BD| = |AD| = |BCY), which
implies that ZFCD = ZCDB =2 - ZCDF since DF is the angle bisector
of ZCDB.

Altogether, we have ZDFC = /ZFCD =2-ZCDF. Since the angles in any
triangle sum to 180 degrees, we also know that

180° = LDFC + LFCD + ZCDF =5 - ZCDF.

From this, it follows that Z/CDF = % -180° = 36°, and hence ZFCD =
2. ZCDF = 72°. Since triangle DBC is isosceles, also ZC'DB = 72° holds.
Using alternating interior angles, we now find that ZABD = ZCDB = 72°.

3. Let the scores of the six teams be s, s+ 2, s+4, s+6, s+ 38, and s+ 10. Let
T be the total number of awarded points, so that T = 6s + 30. It follows
that the total number of points is a multiple of six.

The number of games played equals 62%5 = 15. Let g be the number of
games that ended in a draw. A game that ends in a draw results in
1+ 1 = 2 awarded points and every other game results in 3 +0 = 3
awarded points. Therefore, the total number of awarded points equals
T=g-24+(15—-g)-3=45—g.

From T = 45 — g it follows that 30 < T < 45 because the number of draws
satisfies 0 < g < 15. Since T is a multiple of six, this leaves the following
possibilities: T'= 30, T' = 36, and T" = 42.

16



4.

If T = 30, we have g = 45 — 30 = 15. But then all games must have ended
in a draw and all teams must have the same score. Hence, the case T' = 30
is ruled out.

If T = 36, then g = 45 — 36 = 9 and s = 7529 = 1. The six scores are
therefore 1,3,5,7,9,11. The team that scored 1 point must have lost 4
games (and played one draw). The team that scored 3 points must have
lost at least 2 games (at most 3 games were not lost). The team that scored
11 points must have won at least 3 games (otherwise the score is at most
3+3+14+141=09), so apart from the teams with scores 1 and 3 at least
one other team has lost a game. In total, at least 4 +2 4+ 1 = 7 games
ended in a loss for some team, contradicting the fact that 15 —9 = 6 games

did not end in a draw. This rules out the case T' = 36.

Finally, we consider that case T" = 42. The six scores are 2,4, 6, 8,10, 12 and
we have g = 3. Since the total number of points obtained from won games
is a multiple of three, the six teams must have received at least 2,1,0,2,1,0
points from draws, respectively. In total, exactly 2-3 = 6 points are awarded
in games that ended in a draw. Hence, since 2+ 14+0+241+0 = 6,
the six teams have received exactly the mentioned numbers of points from
draws. In particular, the team ending in the fourth place (with 6 points),
was involved in 0 draws and must have won exactly two games.

(a) Let r be the remainder upon dividing n by a. We will first prove that
r < 5. If 2a < n, this follows from the fact that r < a. If 2a > n, we
have r = n —a (since we already knew that a < n), which implies that
r=n—-a<n-—g=3g.

For the same reasons, the remainder upon dividing n by b is smaller
than 7.

It follows that the two remainders obtained by dividing n by a and b
add up to a number smaller than n.

(b) Let r, s, and ¢ be the remainders upon dividing n by 99, 132, and 229,

respectively. The number n — ¢ is a multiple of 229 and nonzero since
n > 229 > t. We know that r + s+t =n, and hence n —t =r + s.
We can conclude that r + s is a positive multiple of 229. Since
994 132 < 2- 229, we have r + s < 2-229, which implies that we must
have r + s = 229.
Since r < 98 and s < 131, the fact that r + s = 229 implies that
r = 98 and s = 131. Therefore, the number n + 1 is divisible by both
99 and 132, and hence by their least common multiple lem(99, 132) =
lem(9-11,3-4-11) =4-9-11 = 396. Also, from n = 229 + ¢t and
t < 229 we deduce that n+1 < 458. It follows that the only possibility
is n 4+ 1 = 396, hence n = 395.
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When n = 395 the three remainders are r = 98, s = 131, and t = 166,
and indeed satisfy the equation n =r + s+ ¢.

5. Four of the eight points are coloured black and the other four points are
coloured white in the way indicated in the figure on the left. The circle
through the four black points is denoted C; and the circle through the four
white points is denoted C5. If two points lie on a circle C', we say that C
covers that pair of points.

Circle C; covers all pairs of black points and circle Cy covers all pairs of
white points. It is easy to check that each of the 4 - 4 = 16 pairs consisting
of a white point and a black point is covered by one of the four circles in
the figure on the right. It follows that the six circles form a solution.

We will now prove that five or fewer circles do not suffice. First observe
that any circle passing through more than two black points must be equal
to C7 and that any circle passing through more than two white points must
be equal to Cy. Indeed, a circle is already determined by three points.

A circle passing through 2 or fewer black points covers at most one of the
% = 6 pairs of black points. A solution consisting of only five circles must
therefore contain circle C (since otherwise at most 5 pairs of black points
are covered). In the same way we see that such a solution must contain

circle Cs.

Each of the remaining three circles in the (hypothetical) solution contains
at most 2 black points and at most 2 white points. Such a circle covers
at most 2 -2 = 4 pairs consisting of a white and a black point. In total,
the five circles can therefore cover at most 0 +0 + 3 - 4 = 12 such pairs,
while there are 16 to be covered. The five circles can therefore not form a
correct solution after all. We conclude that the smallest number of circles
in a solution is 6.
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BxMQO Team Selection Test, March 2018

Problems

. We have 1000 balls in 40 different colours, 25 balls of each colour. Determine
the smallest n for which the following holds: if you place the 1000 balls in
a circle, in any arbitrary way, then there are always n adjacent balls which
have at least 20 different colours.

. Let AABC be a triangle of which the side lengths are positive integers
which are pairwise coprime. The tangent in A to the circumcircle intersects
line BC in D. Prove that |[BD] is not an integer.

. Let p be a prime number. Prove that it is possible to choose a permutation
ai,az,...,ap of 1,2,...,p such that the numbers ai, aia2, aiazas, ..
aiazas - - - ap all have different remainder upon division by p.

9

. In a non-isosceles triangle AABC we have ZBAC = 60°. Let D be the
intersection of the angular bisector of ZBAC with side BC, O the centre
of the circumcircle of AABC and F the intersection of AO and BC. Prove
that ZAED 4+ ZADO = 90°.

. Let n be a positive integer. Determine all positive real numbers x satisfying

22 32 (n+1)? n(n + 3)
+ +...+t—=nr+ —".

2
e +x+1 T+ 2 r+n 2
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Solutions

1. Consider the circle in which the 25 balls of one colour are all next to each
other. To get at least 20 different colours, you have to take at least 18 of
these groups plus one ball one one side and one ball on the other side of
these groups. In total, you need at least 18 - 25 + 2 = 452 adjacent balls.
Hence, n > 452.

Now we will prove that 452 balls is enough. Consider an arbitrary circle
of balls and all possible sets of consecutive balls having exactly 20 colours.
(There exists at least one such a set: take an arbitrary ball and add balls
on the left one by one, until you have exactly 20 colours.) Take such a set
having a minimum number of balls. Suppose that the first ball is white. If
there is another white ball in the set, then we could have removed the first
ball to get a smaller set with the same number of colours, but less balls in
total. This contradicts the minimality of our set. Therefore, no other ball
is white. In particular, also the last ball of the set is not white; suppose it
is black. In the same way, we find that no other ball in the set is black. So
there are only one white ball, one black ball, and balls in 18 other colours,
at most 25 of each colour. In total, there are at most 18- 25 + 2 = 452 balls.
Indeed, it is always possible to find a set of 452 consecutive balls in at least
20 different colours. We conclude that the minimum n is 452. (]

2. There are two different configurations.
Without loss of generality, assume that
B lies between D and C. Let a = |BC/|,
b= |CA|, ¢c=|AB|, x = |BD|, and y =
|AD|. Due to the alternate segment theo-
rem we have /BAD = ZACB = LACD,

hence AABD ~ ACAD (AA), therefore
|[BD| _ |AB| _ |AD]| r _ ¢ _ _y

[AD] — |cA] — 1cD’ %Yy = b = atz-
This yields yc = bz and ac + xzc = by,
and hence byc = b’z and ac® + zc? = byc.

Combining this, we obtain b%z = ac? +

xc?, or x(b? — %) = ac?.

Suppose on the contrary that z is an
integer. Then b — ¢? is a divisor of ac?.
But we know ged(b,¢) = 1, and hence ged(b? — ¢?,¢) = ged(b?,c) = 1.
Therefore, b> — ¢? is a divisor of a. This yields > — ¢ < a. Note that
b2 —c? > 0, because x(b? — c?) = ac?; hence, b—c > 0 also holds. Therefore,
b2—c2=(b—-c)(b+c)>1-(b+c), because b and c are positive integers.
Hence, a > b+ ¢, which is contradicting the triangle inequality. Therefore,
x = |BD| cannot be an integer. (]
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3. Let b; = ajas---a;, for 1 < i < p. We will prove that it is possible to

choose a permutation Such that b; = i mod p for all i. For i > 2, the
congruence a; = b; - b;_ 1 mod p holds, 1f b;—1 %0 mod p. Therefore we
now choose a; =1 and a; =i (i — 1) mod p for 2 <7 < p. Now it is
sufficient to prove that a; 1 mod p for all 2 <4 < p and a; # a; mod p
forall 2 <j <i<p.
Suppose the contrary. Then a; = 1 mod p for certain 2 < i < p. Then
i-(i—1)"' =1 mod p holds, hence i =i —1 mod p, or 0 = —1 mod p.
Because p > 2, this is a contradiction. Now suppose that a; = aj mod p
for certain 2 < j <4 < p. Then we have i- (i —1)"! =j-(j—1)"! mod p,
hence i(j — 1) = j(i — 1) mod p, or ij —i =1ij —j mod p, or —i = —j
mod p. However, as 2 < j < i < p, this is impossible.

We conclude that if we choose the a; as above, all a; are distinct, so that

they indeed form a permutation of 1, 2, ..., p. Moreover, by definition
we have that aias---a; =7 mod p, therefore also the second condition is
satisfied. (I

4. Let M be the other intersection point
of AD with the circumcircle of AABC.
Then M is the midpoint of the circle arc
BC on which A does not lie. Now we have
/COM = %4008 = LCAB = 60°.
Moreover, we have |OC| = |OM|, hence
AOCM is isosceles with apex angle equal
to 60°. This means that it is equilateral,
hence |CM| = |CO|. Because OM is
perpendicular to BC, this yields that M
is the reflection of O in BC, and hence
/DOM = /ZDMO.

Moreover, we have ZDMO = LZAMO = ZMAO, because |OA| = |OM]|.
We now obtain ZODE = 90°—£ZDOM = 90°—-ZDMO = 90° - LM AO =
90° — ZDAE. Therefore, Z/ODE + ZDAFE = 90°. In triangle ADE we
have 180° = LDAFE + ZAED + ZODFE + ZADO, hence we conclude that
LAED + ZADO = 90°. O

5. For 1 <4 <n we have

(z+1) (i+1)2—(i+1)(z+3) (i+1)(1—x)
x4+ + 1 + x+1 Z + 1 + x+1 ?

so we can rewrite the left hand side of the equation to

nz? +2+3+...+ (n+1)+ 2= o) -y eal)Eos)
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We have 2+ 3+ ...+ (n+ 1) = in(n + 3), hence this sum cancels against
"(nTJFS) on the right hand side of the original equation. Moreover, we can
move na? to the other side, and write a separate factor 1 — x in all fractions.

The equation then becomes

(1—30)-(%“—1—%—1—...—&—%) = nx — na’.
The right hand side, we can factor as nz(1 — z). Now, we observe that
x = 1 is a solution to this equation. If there were another solutions x # 1,
then it would satisfy

2 4 3 ntl _
x+1+z+2+"'+w+n_n'r'

However, for 0 < z < 1 we have

2 3 n+l 23 n+l _
I+1+z+2+...+m+n>2+3+..‘+ =n>n,

while for z > 1 we have

2 3 n+1 2 3 ntl _
I+1+w+2+...+x+n<2+3+...+n+1—n<nx.

Hence, there are no solutions with x # 1. We conclude that x =1 is the
only solution, for all n. O
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IMO Team Selection Test 1, June 2018

Problems

. Suppose a grid with 2m rows and 2n columns is given, where m and n
are positive integers. You may place one pawn on any square of this grid,
except the bottom left one or the top right one. After placing the pawn, a
snail wants to undertake a journey on the grid. Starting from the bottom
left square, it wants to visit every square exactly once, except the one with
the pawn on it, which the snail wants to avoid. Moreover, it wants to finish
in the top right square. It can only move horizontally or vertically on the
grid.

On which squares can you put the pawn for the snail to be able to finish
its journey?

. Suppose a triangle AABC with ZC = 90° is given. Let D be the midpoint
of AC, and let F be the foot of the altitude through C' on BD. Show that
the tangent in C of the circumcircle of AAEC is perpendicular to AB.

. Let n > 0 be an integer. A sequence ag, a1, asg, ... of integers is defined as
follows: we have ag = n and for k > 1, aj is the smallest integer greater
than ag_; for which ay + ag—_1 is the square of an integer. Prove that there
are exactly |v/2n| positive integers that cannot be written in the form
ar —ap with k£ > ¢ > 0.

. Let A be a set of functions f: R — R. For all f;, fo € A there exists a
f3 € A such that

fi(faly) — 2) + 22 = f3(z +y)
for all x,y € R. Prove that for all f € A, we have

flz = f(z)) =0

for all z € R.
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Solutions

1. Number the rows from bottom to top by 1,2,...,2m, and the columns
from left to right by 1,2, ...,2n, so that the snail starts in square (1,1) and
finishes in (2m, 2n). Colour the squares of the grid like a chessboard, where
(4,7) is coloured black if ¢ + j is even and white if ¢ + j is odd. Since 2m
and 2n are even, the number of black squares equals that of white squares.

The snail starts and finishes on a black square, and alternates between
black and white squares on its journey. Therefore, the number of black
squares it visits is one larger than that of white squares, so the pawn must
be on a white square (i.e. a square (4, j) with ¢ + j odd) for the snail to be
able to finish its journey.

Let us show that if the pawn is on such a square, then the snail is always
able to undertake its journey. Let 1 < k < m and 1 <[ < n be such the
pawn is either on row 2k — 1 or row 2k, and either on column 2/ — 1 or
column 2[. Then have the snail move all the way to the right on odd rows
with a number less than 2k — 1 (and then move one square up, which puts
the snail on an even row), and all the way to the left on even rows with
a number less than 2k — 1 (and then move one square up, which puts the
snail on an odd row again). This puts the snail on square (2k —1,1). From
here, while the snail is in a column with number less than 2I — 1, have the
snail move through each 2 x 2-block in the order: bottom left, top left,
top right, bottom right. After moving one square to the right, this puts
the snail on the bottom left square of the next 2 x 2-block. This puts the
snail on square (2k — 1,2] — 1), which cannot be occupied by the pawn as
2k — 1+ 2] — 1 is even. In this 2 x 2-block, the pawn is either on the top
left or the bottom right square; in the former case, move the snail in the
order: bottom left, bottom right, top right; in the latter case, move the
snail in the order: bottom left, top left, top right. So in both cases, the
snail ends up in the top right square of the 2 x 2-block. The remainder of
the 2 x 2-blocks in rows 2k — 1 and 2k can now be covered by moving in
each of them in the order: top left, bottom left, bottom right, top right.
This puts the snail on square (2k,2n), with all required squares to the
bottom and left visited exactly once. The snail can now finish its journey
by repeatedly doing the following: move one square up, move all the way
to the left, move one square up, move all the way to the right. This puts
the snail on square (2m, 2n), as required.

Therefore, the snail is able to finish its journey if and only if the pawn is
put on a square (4,5) with ¢ + j odd. O
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2. Let S be the intersection of the

tangent with AB. Then we need ¢
to show that ZBSC = 90°.
Since Z/BCD = 90° = ZCED b
we have ABCD ~ ANCED, so
c
155t = {pet- As [DA| = |DC| £
it follows that % = %. To- 4 s

gether with ZBDA = ZEDA

this gives AADE ~ ABDA (SAS). Therefore ZABD = ZEAD. Since
SC' is a tangent to the circumcircle of AAEC we also have that (by the
tangent chord angle theorem) /EAD = /EAC = ZSCE. So Z/SCE =
/ABD = /SBE. Hence SBCEFE is a cyclic quadrilateral. Therefore
£LBSC = ZBEC = 90°. O

3. Let m = L\/ﬁj We first show that the sequence of squares ag + a1,a; +

az, ... is the sequence (m+1)2, (m+2)2,.... After that, we will show that
the differences a; — a;_1 form a sequence of consecutive even numbers and
a sequence of consecutive odd numbers. We will use this to prove the given
statement.
Note that ag + a1 is the smallest square greater than 2n. Therefore
ag + a; = (m + 1)2. We show by induction on i that a;_; + a; = (m +14)2.
For i = 1, this is what we have just shown. Suppose that a;_14a; = (m+j)?.
Then a;_1 > W (since otherwise a; could have been chosen in such
a way that a;_1 +a; = (m+j — 1)?), so

.2
a; = (m+5)? —aj_1 < (m+j)? — H=

2m24+4mj+25%2—(m2+2mj+52+1—2m—25)
2

_ m242mi+52—14+2m+2j < m24+2mi+ji2+142m+2j _ (mtj+1)>
- 2 2 - 2 .

We deduce that aj + aj11 < (m+ j + 1)%. Moreover, we have a; + aj41 >
aj—1+a; = (m+j5)? so a; +aj1 = (m+ j+ 1), which completes the
induction.

Define b; = a; — a;_1 for all i > 1. Then we have

bit2 — by = ajy2 — aiy1 — a; + a;—1
= (@it2 + ai+1) + (@i + ai—1) — 2(ait1 + a;)
=(m+i+2)2+(m+i)?—2m+i+1)>
=(m+i)?+4m+i)+4+ (m+i)* —2(m+14)* —4(m +14) — 2
=2
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for all 7 > 1. Hence

(b17b37b5,...) = (bl,bl +2,b1 —1—4,...),
(b27b4,b6,. . ) = (bg,bg +2,by+4,.. )

We have by + b2 = (a2 — a1) + (a1 —ag) = (a2 + a1) — (a1 + ag) =
(m+2)? — (m+1)%? = 2m+3. In particular, b; and by have distinct parities.
So we can write every integer that is at least b; and has the same parity
as by as ay — ag—1 for some k. The same is true for every integer that is
at least by and has the same parity as bs. All integers of the form ajy — ay
with k > ¢ + 2 are at least by + by—1 > b1 + b2 and therefore both greater
than b; and greater than ;. Hence this does not give us any new numbers
of the form ay — ay with k > ¢ > 0.

We deduce that the numbers not of the form ap — ay with k& > £ > 0 are
precisely those that either are less than b; and have the same parity as by, or
are less than by and have the same parity as bs. There are LblT*lJ + LI’QTAJ
of those. Note that the argument of exactly one of the floors is an integer.

Hence we can rewrite the above as bl—;l + b22’1 - 1= bl+b+73 =2m

=m.

We conclude that there are exactly m = |v/2n] positive integer which
cannot be written in the required form. O

. Substituting x = 0 gives fi ( fg(y)) = f3(y) therefore the f3 corresponding
to f1, f2 € A is the composition f3(x) = f1(f2(z)). Substituting z = —y
now gives that for all fi, fo € A we have

f1(f2(y) +y) — 2y = f3(0) = f1(f2(0))

for all y € R.

Substituting « = f2(y) now gives that for all fi, fo € A, there exists f3 € A
with
J10) +2f2(y) = f3(fa(y) + v)

for all y € R. We have already seen that we can write f5(f2(y) + y) as
2y + f3(f2(0)). Hence

2f2(y) = 2y + f3(f2(0)) — f1(0)

for all y € R. We deduce that there exists a d € R, independent of y, such
that fo(y) =y +d for all y € R.

Hence f € A is of the form f(z) = z + d with d a constant. Therefore we
have f(z — f(z)) = f(z — (z + d)) = f(—d) = —d+d = 0. O
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IMO Team Selection Test 2, June 2018

Problems

(a) If c(a® +b3) = a(b®+c3) = b(c® +a®) with a, b, ¢ positive real numbers,
does a = b = ¢ necessarily hold?

(b) If a(a®+b3) = b(b? +c®) = ¢(c® +a®) with a, b, ¢ positive real numbers,
does a = b = ¢ necessarily hold?

. Find all positive integers n for which there exists a positive integer k£ such
that for every positive divisor d of n, the number d — k is also a (not
necessarily positive) divisor of n.

. Let ABC be an acute triangle, and let D be the foot of the altitude through
A. On AD, there are distinct points F and F such that |[AE| = |BE| and
|AF| = |CF|. A point T # D satisfies /ZBTE = ZCTF = 90°. Show that
|TA]? =|TB|-|TC|.

. In the classroom of at least four students the following holds: no matter
which four of them take seats around a round table, there is always someone
who either knows both of his neighbours, or does not know either of his
neighbours. Prove that it is possible to divide the students into two groups
such that in one of them, all students know one another, and in the other,
none of the students know each other.

(Note: if student A knows student B, then student B knows student A as
well.)
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1.

2.

Solutions

(a) We claim that (a,b,c) = (2,2, —1 + V/5) satisfies the given equalities.

As all real numbers in this triple are positive, and 2 # —1 + /5, the
answer to the first question is ”no”.
Note that ¢® = (=1 +v5)> = —=1+3-v5—-3-545V5 = —16 + 8V/5.
Then we have c(a® + %) = (=1 ++/5) -2-8 = —16 + 16v/5 and
a(d®+¢c*) =b(c® +a®) =2 (—16 + 85 + 8) = —16 + 16+/5, so the
given equalities are indeed satisfied.

(b) We show that if the given equalities are satisfied, that then a = b = c.
Without loss of generality, we assume that a > b, c. Then we have

a(a® + %) > bla® + %) > b( +b%) = a(a® + b?),

so equality holds everywhere. Now a = b follows from a> + b3 being
positive, and a = ¢ follows from b being positive. Therefore a = b = c.

O

If n is either 1 or a prime number, then the positive divisors of n are 1 and
n (which coincide if n = 1). In this case we can take k = n + 1 and note
that 1 — (n+1) = —n and n — (n + 1) = —1 are also divisors of n. Hence
if n =1 or if n is a prime number, the given property is satisfied. If n = 4,
the positive divisors are 1, 2, and 4. Taking k = 3, we see that —2, —1, 1
are divisors of 4, so n = 4 also has the given property. If n = 6, the positive
divisors are 1, 2, 3, and 6. Taking k = 4, we see that —3, —2, —1, and 2
are divisors of 6, so n = 6 has the given property. Hence if n <6 or if n is
a prime number, n has the given property.

Now suppose that n > 6 is composite. Suppose that k is a positive integer
such that for every positive divisor d of n, the number d — k is also a divisor
of n. Since n is a positive divisor of n, it follows that n — k is a divisor of n.
As the next largest divisor of n is at most %n, it follows that n — k < %n,
and therefore that k > %n Moreover, 1 is a positive divisor of n, so 1 — k
is a divisor of n. Note that 1 —k <1 — n. Asn > 6, we have %n > 1, so

1 i

5N — %n > 1, and therefore —%n > 1 — 5n. The only divisors that are at

most 1— 1n are therefore —n and (if n is even) —$n. Therefore 1 —k = —n

orl—k= —%n.

In the latter case, we have k = %n +1,son—k= %n — 1. However, in
the same way as before, we see that for n > 6 no divisor of n is equal to
%n — 1, as the next largest divisor after %n is at most %n < %n — 1. This
contradicts n — k being a divisor of n.
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In the former case, we have 1 — k = —n, so k = n + 1. As n is composite,
there exists a divisor d with 1 <d <n. Thend —k =d—n —1 is also
a divisor of n. However, d < %n, sod—n—1< —%n — 1, but the only
divisor that is at most —%n —11is —n. We deduce that d —n — 1 = —n, so
d = 1, which is a contradiction.

Therefore the n that have the given property are precisely those n for which
either n < 6 or n is prime. O

. We consider the configuration
in the figure.

Let M be the midpoint of AB,
and let N be the midpoint of
AC'. From what is given in the
problem, it follows that F lies
on the perpendicular bisector of
AB, so ZBMFE = 90°. Since
we also have Z/BTFE = 90° and
/BDE = 90°, by Thales’s theo-
rem it follows that BDTEM is
a cyclic pentagon. In the same
way, it follows that CFDTN is a cyclic pentagon. Now ZNTM =
360° — DTN — ZMTD = (180° — ZDTN)+ (180°— ZMTD) = ZDCN +
/MBD =/BCA+ ZABC = 180° — ZCAB = 180° — ZN AM. Therefore
AMTN is a cyclic quadrilateral (which also follows directly from Miquel’s
theorem).

Now let us chase some angles in order to show that ATBA ~ AT AC. We
have ZNTC = ZNFC = 90° — ZFCN since ZFNC = 90°. Moreover,
we have ZFCN = LFCA = ZCAF since |AF| = |CF|, so ZNTC =
90° — LCAF = 90° — LCAD = /DCA = ZBCA. Therefore ZACT =
/NCT = 180° — ZNTC — ZCNT = 180° — /BCA — ZCNT. As MN
is a mid-parallel in triangle ABC, we have M N || BC and it follows
that 180° — ZBCA = ZCNM. Hence LACT = /CNM — Z/CNT =
LTNM = LTAM = /TAB (using the cyclicity of the quadrilateral
AMTN). Similarly, we have ZABT = /TAC, so ATBA ~ ATAC. It

follows that llgjjl‘ };gl‘ so [TA|> = |TB|-|TC], as required. O

F

. Consider a group of students in which all students know each other, and
which has the maximal number of students possible. (Such a group exists,
as there are only finitely many students in the classroom, and there exists
a group of students in which all students know one another, e.g. a group
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consisting of only one student.) Denote this group of students by X. We
show that by dividing the students in X and the group of students not in
X, we may achieve a division with the required properties.

Note that it suffices to show that in the group of students not in X, none
of the students know each other. Suppose for a contradiction that A and
B are students not in X who know each other. As X is chosen to have
the maximal number of students possible, there is a student A’ in X who
doesn’t know A, and a student B’ who doesn’t know B. We first show that
we can take A’ and B’ to be different. If not, then there is a unique student
C in X who doesn’t know A, and a unique student in X who doesn’t know
B (and they are the same student). In other words all other students
in X know both A and B, so by replacing C by A and B, we obtain a
group of students in which all students know one another; all students in
X know each other, A and B know everyone in X (aside from C'), and A
and B know each other. However this group is larger than X, which is a
contradiction.

Therefore we may assume that A’ and B’ are distinct. Note that A" and B’
are in X, so they know each other. Now if A, B, B’, A/, in that order, take
seats around a round table, everyone knows precisely one of his neighbours;
A and B, and A’ and B’ know each other, but A and A’, and B and B’
do not know each other. This contradicts the given property. Therefore
dividing the students into X and the group of students not in X gives a
division with the required properties. O
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IMO Team Selection Test 3, June 2018

Problems

. A set of lines in the plan is called nice if every line in the set intersects an
odd number of other lines in the set.

Determine the smallest integer k£ > 0 having the following property: for
each 2018 distinct lines f1, 5, ..., f3918 in the plane, there exist lines
62018+1, 520184—27 ey ég(ng.;,.k such that the lines 61, 42, ceny 62018-‘1-]6 are
distinct and form a nice set.

. Find all functions f: R — R such that

F@®) = fy*) < (f(2) +y) (z — f(y)

for all z,y € R.

. Determine all pairs (a, b) of positive integers such that (a + b)* — 2a3 — 2b3
is a power of two.

. In a non-isosceles triangle ABC' the centre of the incircle is denoted by
I. The other intersection point of the angle bisector of ZBAC and the
circumcircle of AABC is D. The line through I perpendicular to AD
intersects BC in F. The midpoint of the circle arc BC' on which A lies, is
denoted by M. The other intersection point of the line M1 and the circle
through B, I and C, is denoted by N. Prove that F'N is tangent to the
circle through B, I and C.
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Solutions

1. First we prove that the number of lines in a nice set is even. Suppose on
the contrary that the number of lines is odd. Then on each of the odd
number of lines, there is an odd number of intersection points, so the total
number of intersection points is odd. However, each intersection point is
counted twice (once for each of the lines on which is is lying), so the total
should be even, which is a contradiction. So the total number of lines in a
nice set has to be even. In particular, 2018 4+ k£ must be even, so k must be
even.

Now suppose that there are 1009 directions, such that in each direction
there are two of the original lines. Then each line is parallel to exactly
one other line. If k£ < 1010, then k& < 1008, so there must be a direction
in which we do not add a line. Consider one of the original lines ¢ in this
direction. Within the final set of all lines, it intersects all lines except itself
and the line it is parallel to. This is an even number. Hence, the resulting
set is not nice. Therefore, there is an example in which at least 1010 are
needed.

We will now show that it is possible to add exactly 1010 lines such that the
resulting set is nice. We consider all directions in which there is an even
number (greater than 0) of the original lines. There are at most 1009 such
directions. For each of these directions, we add one line. Each line is then
parallel to an even number (possibly 0) of other lines. First suppose that
the total number of lines is even. Then each lines intersects an odd number
of lines (the total set minus itself and an even number of other lines). Now
suppose that the total number of lines is odd. Then each line intersects
an even number of lines. We ass a line in a new direction, which therefore
intersects all lines (an odd number), so that each line after that intersects
an odd number of other lines.

Now we have a nice set, and we have added at most 1009 + 1 = 1010
lines. Possibly, there are less than 1010. In this case, the number of lines
added is even, because the total number of lines in a nice set is always
even. We choose a direction in which there is at least one line. We then
keep adding two lines in this direction. These lines intersect all lines in
the other direction, which is an odd number in total. These other lines
each got two new intersection points, so they still have an odd number
of intersection points. This also holds for the existing lines in the chosen
direction, because they get zero new intersection points. The set is still
nice. We keep adding pairs of lines until we have 1010 lines in total.

We conclude that the minimum k& satisfying the conditions is k£ = 1010. O
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2. Substituting x = y = 0 yields 0 < f(0) - —f(0). However, squares are

non-negative, so this yields f(0)?> = 0 and hence f(0) = 0. Now taking
x =0 and y = t, we obtain — f(t?) < t-—f(t), while taking x =t and y = 0
yields f(t?) < f(t) -t. We find tf(t) < f(t?) < tf(t), hence f(t?) = tf(t)
for all t € R. On the left hand side of the function inequality we can replace
f(x*) — f(y?) by zf(x) — yf(y). By expanding on the right hand side, we
obtain of(z) — y(y) + oy — F(2)f(y), hence

f@)f(y) <wy.

Then f(t?) = tf(t) yields f(1) = —f(—1). By first substituting y = 1 and
then y = —1, we obtain, for all z € R:

> f@)f(1) = —flx)f(-1) 2 —z- —1 ==

Hence, equality must hold, which means that f(z)f(1) = . In particular,
this yields f(1)? = 1, hence f(1) = 1 or f(1) = —1. In the former case, we
get f(z) =z for all z and in the latter case, we get f(z) = —z for all .

When we check f(z) = z with the original function inequality, we get
22 — 9% on the left hand side and (z + y)(z — y) = 22 — y? on the right
hand side, hence this function satisfies the inequality. When we check
f(x) = —x, the left hand side becomes —x? + y? and the right hand side

becomes (—z + y)(x +y) = —2% + 32, so also this function is a solution.
We conclude that the solutions are: f(z) =« for all x € R and f(z) = —=x
for all z € R. O

. First we determine the pairs (a, b) with ged(a,b) = 1. We have

(a+b)3 —2a® - 2b° = a® + 3a®b + 3ab® + b* — 2a® — 2b°
= —a® — b + 3ab(a + b)
—(a+b)(a® — ab + b?) + 3ab(a + b)

= (a +b)(—a® + ab — b* + 3ab)

= (a4 b)(—a® — b* + 4ab).
This has to be a power of two. Because a + b is positive, the other factor
must also be positive, and they are both powers of two. As ged(a,b) =1,
at least one of a and b is odd. Then a? + b? is congruent to 1 or 2 modulo
4, hence —a? — b2 + 4ab is congruent to 3 or 2 modulo 4. However, it is also

a power of two, so 3 modulo 4 is impossible, and in the case of 2 modulo 4
it has to equal 2. We conclude that —a? — b% + 4ab = 2.
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Suppose that a + b is at least 8. Because it is a power of two, it is also
divisible by 8, hence we can write b = 8m — a for a certain positive integer
m. Then we have

2=—a?— b+ 4ab
= —a® — (8m — a)? + 4a(8m — a)
= —a® — 64m? + 16ma — a® + 32ma — 4a>

= —6a?% + 48ma — 64m?,
hence

1 = —3a® + 24ma — 32m>.

Modulo 8, this becomes 1 = —3a?. If a is even, then the right hand side
is even, and if a is odd, then the right hand side is —3 modulo 8. In both
cases, the equality does not hold modulo 8. We conclude that a + b is not
greater or equal to 8. Because a and b are both at least 1, a + b is equal to
2 or 4.

o If a+b=2,then a = b= 1. Now we have —a® — b? + 4ab = 2, hence
the product of the two factors is a power of two (namely 4). Hence
(1,1) is a solution.

e If a + b = 4, then because of gcd(a,b) = 1 we have either a = 1 and
b = 3 or the other way around. Now —a? — b? + 4ab = 2, so also the
product of the two factors is a power of two (namely 8). Hence (1, 3)
and (3, 1) are solutions.

Now consider a solution (a,b) with ged(a,b) = d > 1. Then d is a divisor
of (a+b)® — 2a3 — 2b3, hence d has to be a power of two itself. We now
remark that (%, %) is another solution, because d® is divided out from the
power of two (a + b)® — 2a® — 2b3, leaving another power of two. Hence,
(5 g) has to be one of the three previously found pairs. On the other hand,
each of these three pairs multiplied by an arbitrary power of two is another

solution.

We conclude that all possible solutions are given by
(a,b) = (2%,2%), (a,b) = (2%,3-2%), and (a,b) = (3-2%,2"),

where k£ runs through all non-negative integers. (I

34



4. We consider the configuration in which |[AB| > |AC|, causing C to lie
between B and F'. For other configurations, the proof is analogous.

Because ZDAC = ZBAD holds, D is the midpoint of the circle arc BC on
which A does not lie. Hence, the line DM is a diameter of the circle. Thales’s
theorem yields ZDBM = 90°. Let K be the intersection point of BC and
DM. As DM is the segment bisector of BC, we have ZBKM = 90° =
ZDBM. Therefore, AMKB ~ AMBD (AA). This yields {751 = {5751
hence |MD| - |[MK| = |MB|*>. Because K is on the interior of M D, this
equality also holds using directed distances: MD - MK = M B2.

Because D is the midpoint of arc BC, we have |DB| = |DC|. Moreover,
/CDI = ZCDA = ZCBA and £/DCI = /DCB + /BCI = /DAB +
/BCI = %4CAB + %ZBCA. Using the sum of the angles in triangle
DCI, we now get that ZDIC = 180° — ZCBA — %LCAB — %ABCA =
1/CAB + 1/BCA = /DCI. Hence, triangle DCI is isosceles with
|DC| = |DI|. We conclude that D is the centre of the circle through B,
C and I. Now DB is the radius of this circle, and DB is perpendicular
to M B, which yields that M B is a tangent line. Using the secant-tangent
theorem, we get M B2 = MI - MN. Together with the previous paragraph
we conclude that MD - MK = MI - MN. Hence, NDKI is a cyclic
quadrilateral because of the same theorem.

We also know that /FID = 90° = ZFKD, hence DKIF is a cyclic
quadrilateral. We conclude that NDKIF is a cyclic pentagon. This yields
/DNF =180° — ZDIF = 90°. Hence, NF is perpendicular to the radius
DN of the circle through B, I and C; this means that F'N is tangent to
this circle. (]
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Junior Mathematical Olympiad, September 2017

Problems

Part 1

. A positive three-digit number is called nice if the sum of the last two digits
equals the first digit. For example, 123 is not nice, because 1 is not equal
to 2+ 3. How many three-digit numbers are nice?

Note that a three-digit number cannot start with digit 0.

A) 45 B) 48 C) 50 D) 54 E) 55

. The faces of a cube have different colours. In the figure you can see a net
for the cube. The points A and B in the net correspond to two vertices of
the same face of the cube.

What colour does that face have?

A) red B) blue C) green D) black E) yellow

B

red | white | blue

green | black |yellow

. We consider sequences of 20 integers. The integers can be positive or
negative, but cannot be zero. Also, we impose the following conditions on
the sequences: of any two adjacent numbers at least one is positive; the
sum of any three adjacent numbers is negative; the product of any four
adjacent numbers is positive.

Consider the following four statements about such sequences:

e There can never be two adjacent positive numbers.
e There may be more positive than negative numbers.
e The sum of all 20 numbers is always negative.

e The number —1 can never occur.

How many of these statements are true?
A) 0 B) 1 Q)2 D) 3 E) 4
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4. The number n? + 21 is the square of an integer.
For how many positive integers n does this hold?

A)0 B) 1 C) 2 D) 3 E) 4

5. Sanne is building a 9x9x9 cube by gluing 1x1x1 blocks together. She
doesn’t have quite enough blocks to complete the task. Therefore, she
decides to leave out some of the blocks from the large cube. In order to still
get a nice rigid cube, she makes sure that no two holes (left out blocks) are
adjacent. In fact, two holes should not even touch in an edge or a single
vertex. Also, she does not leave out any of the blocks on the outside of the
cube.

What is the minimum number of blocks that Sanne needs to build the
cube?

A)365  B)604  C)665 D)673  E) 702

6. Peter starts out with the numbers 1, 2, 3, and 4. He may take two of his
numbers and replace them by their sum, their product, or their difference.
He performs this replacement step three times, after which a single number
remains.

Example. He could replace the 2 and the 4 by 24 4 = 6, then replace the 1 and
the 3 by 3 — 1 = 2, and finally replace the 6 and the 2 by 8 = 2 4+ 6. Then, the
remaining number would be 8.

Which of the following five numbers cannot be the number that remains?
A) 28 B) 30 C) 32 D) 34 E) 36

7. Four circles together enclose ten regions in the
plane, as in the figure. We want to place the
numbers 1 to 10 inside the regions (one number
per region). This must be done in such a way
that adding the numbers inside a circle gives
the same answer for all four circles.

Which number should be placed in the region
with the question mark?

A) 1 B) 2 C) 4 D) 6 E) 7
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8. You have a collection of hats. Each hat has three attributes: the colour
(red or blue), the shape (top hat or pointed hat), and the pattern (spots
or stripes). You put a number of gnomes in a room and put a hat on
each of them. For any two gnomes their hats must be different, yet share
at least one attribute (for example: both hats are blue). The gnomes
can see everyone’s hat, except their own. The gnomes are not allowed to
communicate with one another.

What is the minimum number of gnomes you have to put in the room in
order to be be sure that one of them can determine one of the attributes of
his own hat?

A)3 B) 4 Q)5
D) 8 E) That is impossible for any number of gnomes.
Part 2

1. Stef has 18 coins of which 17 are identical, but one is slightly lighter than
the other coins. Together, the 18 coins weigh 214 grams. Stef removes
two of the coins and weighs the remaining 16 coins. Together the 16 coins
weigh 190 grams.

How much does the lighter coin weigh?

2. We say that a positive integer is balanced if the average of the first two
digits is 2, the average of the first three digits (if they all exist) is 3, the
average of the first four digits (if they all exist) is 4, et cetera.

What is the largest balanced number?

3. What is the area of the crown-shaped area?

Note that the figure is not drawn to scale.

4. A clock has the numbers 1 to 12 for indicating the hours. Ernie has
interchanged these twelve numbers in such a way that any two adjacent
numbers on the clock differ by either 2 or 3. Fortunately, the number 12 is
still in the right place, but the 9 is where the 1 is supposed to be.

What number is in the place where the 9 is supposed to be?
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5. The numbers 1 to 8 are assigned to the eight faces
of an octahedron. For each vertex, we compute
the sum of the four numbers on the faces meeting
in that vertex. For four of the vertices we get the
same outcome. For a fifth vertex the outcome is
16.

What is the outcome for the sixth vertex?

6. When a, b, ¢, and d are digits, we denote by abcd the number composed
of those four digits. The numbers abed and cbad are both perfect squares.
The number bad is the cube of a positive integer.

Determine the number abcd.

7. An employee at the supermarket is stacking crisps canisters. There are two
types of canisters: small ones and large ones. Three small canisters stack
to the same height as one large canister. The employee makes a stack of 12
small canisters. Next to it, he makes more stacks of the same height, but
all stacks are different. (If one stack starts with a small canister followed
by a large one, and the other starts with a large one followed by a small
one, the two stacks are different.)
How many different stacks can he make, including the first stack?

8. You may choose any number consisting of five different digits. The digit 0
cannot be used. The next step is to choose two adjacent digits and switch
their positions. You may perform this step five times in total. Finally, you
compute the difference between the initially chosen number and the final
number obtained after switching.

What is the largest possible difference that can be obtained?

Example. Suppose you choose the number 47632. Then you could switch
digits to obtain, in this order, the numbers 46732, 46372, 46327, 43627, and
34627. Then, the difference between the initial number and the final number is
47632 — 34627 = 13005.
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Answers

Part 1
1. D)54
2. D) black

3. ()2 (statements 1 and 3)

4 Q)2

5 C) 665

6 D) 34

7 E)7

8.  E) That is impossible for any number of gnomes.
Part 2

1. 10 grams 5. 20

2. 40579 6. 1296

3. 60 7. 60

4. 5 8. 85230
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