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Introduction

The selection process for IMO 2016 started with the first round in January
2015, held at the participating schools. The paper consisted of eight mul-
tiple choice questions and four open questions, to be solved within 2 hours.
In this first round 10277 students from 354 secondary schools participated.

The 1000 best students were invited to the second round, which was held in
March at twelve universities in the country. This round contained five open
questions, and two problems for which the students had to give extensive
solutions and proofs. The contest lasted 2.5 hours.

The 130 best students were invited to the final round. Also some outstand-
ing participants in the Kangaroo math contest or the Pythagoras Olympiad
were invited. In total about 150 students were invited. They also received
an invitation to some training sessions at the universities, in order to pre-
pare them for their participation in the final round.

The final round in September contained five problems for which the stu-
dents had to give extensive solutions and proofs. They were allowed 3
hours for this round. After the prizes had been awarded in the beginning
of November, the Dutch Mathematical Olympiad concluded its 54rd edition
2015.

The 32 most outstanding candidates of the Dutch Mathematical Olympiad
2015 were invited to an intensive seven-month training programme. The
students met twice for a three-day training camp, three times for a single
day, and finally for a six-day training camp in the beginning of June. Also,
they worked on weekly problem sets under supervision of a personal trainer.

In February a team of four girls was chosen from the training group to
represent the Netherlands at the EGMO in Buşteni, Romania, from 10
until 16 April. The team brought home a silver medal and two bronze
medals, a very nice achievement. For more information about the EGMO
(including the 2016 paper), see www.egmo.org.

In March a selection test of three and a half hours was held to determ-
ine the ten students participating in the Benelux Mathematical Olympiad
(BxMO), held in Soest, the Netherlands, from 29 April until 1 May. The
Dutch team received six bronze medals and three silver medals, and man-
aged to get the highest total score. For more information about the BxMO
(including the 2016 paper), see www.bxmo.org.
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In June the team for the International Mathematical Olympiad 2016 was
selected by three team selection tests on 2, 3 and 4 June 2016, each lasting
four hours. A seventh, young, promising student was selected to accompany
the team to the IMO as an observer C. The team had a training camp in
Hong Kong, from 30 June until 9 July.

For younger students the Junior Mathematical Olympiad was held in Oc-
tober 2015 at the VU University Amsterdam. The students invited to
participate in this event were the 100 best students of grade 2 and grade 3
of the popular Kangaroo math contest. The competition consisted of two
one-hour parts, one with eight multiple choice questions and one with eight
open questions. The goal of this Junior Mathematical Olympiad is to scout
talent and to stimulate them to participate in the first round of the Dutch
Mathematical Olympiad.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.
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Dutch delegation

The Dutch team for IMO 2016 in Hong Kong consists of

• Erik van Cappellen (17 years old)

– participated in BxMO 2016

• Wietze Koops (15 years old)

– bronze medal at BxMO 2016

• Levi van de Pol (14 years old)

– silver medal at BxMO 2015, silver medal at BxMO 2016

– observer C at IMO 2015

• Reinier Schmiermann (14 years old)

– silver medal at BxMO 2016

• Pim Spelier (16 years old)

– silver medal at BxMO 2016

• Gabriel Visser (18 years old)

– bronze medal at BxMO 2016

We bring as observer C the promising young student

• Matthijs van der Poel (15 years old)

– bronze medal at BxMO 2016

The team is coached by

• Julian Lyczak (team leader), Leiden University

• Birgit van Dalen (deputy leader), Leiden University

• Merlijn Staps (observer B), Utrecht University
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First Round, January 2015

Problems

A-problems

1. A square is divided into two rectangular pieces by a
straight line. The sum of the circumferences of the two
rectangles is 30 centimetres.
What is the side length of the square in centimetres?

A) 5 B) 6 C) 15
2 D) 8 E) 12

2. Five suspects are being questioned about the order of arrival at a crime
scene. They make the following statements.

Aad: “I arrived first.”

Bas: “I arrived second.”

Carl: “I arrived third.”

Dave: “Of Aad and Bas, one arrived before me and the other after me.”

Erik: “Of Bas and Carl, one arrived before me and the other after me.”

It is known that exactly one of the suspects lied.
Who was the fourth to arrive at the crime scene?

A) Aad B) Bas C) Carl D) Dave E) Erik

3. A big square consists of 2015 times 2015 small squares.
The small squares on the two main diagonals and on
the four adjacent diagonals are coloured grey, and
the rest is coloured white (see the figure).
How many small squares are coloured grey?

A) 12081 B) 12082 C) 12085
D) 12086 E) 12090

4. The difference of two integers is 10. If you multiply the two integers, you
will get one of the following five numbers.
Which number do you get?

A) 22398 B) 22420 C) 22442 D) 22453 E) 22475
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5. Jan has got a wooden cube. He divides each of the
faces into 2×2 squares that he subsequently paints in a
black-white pattern: two diagonally opposite squares
are painted black, the other two are painted white. In
each vertex of the cube three squares meet. If two or
three of these squares are black, we call the vertex a
dark vertex.
What is the smallest number of dark vertices that the cube can have?

A) 0 B) 1 C) 2 D) 3 E) 4

6. In how many ways can you get the number 100 by adding some consecutive
integers between 1 and 99 inclusive?

A) 1 B) 2 C) 3 D) 4 E) 5

7. In the figure, you see two circles and two lines
together with the nine nodes in which they
intersect. Jaap wants to colour exactly four
of the nodes red, in such a way that no three
red nodes are on the same line or on the same
circle.
How many such colourings can Jaap make?

A) 6 B) 12 C) 18 D) 24 E) 36

8. A tree grows in the following manner. On day 1, one branch grows out of
the ground. On day 2, a leaf grows on the branch and the branch tip splits
up into two new branches. On each subsequent day, a new leaf grows on
every existing branch and each branch tip splits up into two new branches.
See the figure below.
How many leaves does the tree have at the end of the tenth day?

A) 172 B) 503 C) 920 D) 1013 E) 2047

day 1 day 2 day 3
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B-problems
The answer to each B-problem is a number.

1. Julia constructs a sequence of numbers. She starts with two integers she
chooses herself. Then, she calculates the next numbers in the sequence as
follows: if the last number she wrote down is b and the number before that
is a, then the next number will be 2b − a. The second number in Julia’s
sequence is 55 and the hundredth number is 2015.
What is the first number in Julia’s sequence?

2. Two points A and B and two circles are given, one having A as centre and
going through B and the other one having B as centre and going through
A. Point C lies on the second circle and on line AB. Point D also lies on
the second circle. Point E lies on the first circle and on line BD. See the
figure below. Moreover, ∠D = 57◦.
What is the value of ∠A in degrees?

A
B

C

D

E

57◦

?

3. A positive integer is called alternating if its digits alternate between even
and odd. For example, 2381 and 3218 are alternating, but 2318 is not.
An integer is called super alternating if the number itself is alternating
and twice that number is alternating as well. For example, 505 is super
alternating, because both 505 and 1010 are alternating.
How many super alternating integers consisting of four digits exist?
Pay attention: a four digit integer cannot start with a 0.
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4. On a school trip, twenty students will be abseiling. In each round, one stu-
dent will descend the mountain. Hence, after twenty rounds, all students
will have gone down the mountain safely. In the first round, cards bearing
the numbers 1 to 20 are distributed among the students. The student get-
ting number 1 will go down first. In round 2, cards bearing the numbers 1
to 19 are distributed among the remaining students. The student receiving
the number 1 is next to descend. They continue in this way, until there is
only one student left in round 20, who automatically gets a card bearing
the number 1. By an amazing coincidence, no student gets the same num-
ber twice. In the first round, Sara gets a card with number 11.
What is the sum of the numbers on the cards received by Sara?
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Solutions

A-problems

1. A) 5 5. C) 2

2. E) Erik 6. B) 2

3. A) 12081 7. C) 18

4. E) 22475 8. D) 1013

B-problems

1. 35

2. 48◦

3. 70

4. 66
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Second Round, March 2015

Problems

B-problems
The answer to each B-problem is a number.

1. We consider numbers consisting of two or more digits with no digit being
0. Such a number is called thirteenish if every two consecutive digits form
a multiple of 13. For example: 139 is thirteenish because 13 = 1× 13 and
39 = 3× 13.
How many five digit numbers are thirteenish?

2. A quadrilateral ABCD has right angles at A and B. Also, |AB| = 5 and
|AD| = |CD| = 6.
Determine all possible values of |BC|.

3. Berry has picked 756 raspberries. He divides the raspberries among himself
and his friends in such a way that everyone gets the same number of
raspberries. However, three of his friends are not feeling hungry and they
each return a number of raspberries: exactly one quarter of their share.
Berry has a healthy appetite and eats not only his own share, but the
returned raspberries as well. Berry has lost count, but does know for a
fact that he has eaten more than 150 raspberries.
How many raspberries did Berry eat?

4. Four line segments divide a rectangle into eight pieces as indicated in the
figure. For three of the pieces, the area is indicated as well: 3, 5, and 8.

3

5
8

What is the area of the grey quadrilateral?
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5. In the cells of a 5×5-table, the numbers 1 to 5 are placed in such a way
that in every row and in every column, each of the five numbers occurs
exactly once. A number in a given row and column is well-placed if the
following conditions are met.

• In that row, all smaller numbers are to the left of the number and all
larger numbers are to the right of it, or conversely.

• In that column, all smaller numbers are below the number and all
larger numbers are above it, or conversely.

What is the maximum number of well-placed numbers in such a table?

C-problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

1. A set of different numbers are evenly spread if after sorting them from
small to large, all pairs of consecutive numbers have the same difference.
For example: 3, 11 and 7 are evenly spread, because after sorting them,
both differences are 4.

a) Kees starts out with three different numbers. He adds each pair of
these numbers to obtain three outcomes. According to Jan, these
three outcomes can be evenly spread only if the three starting numbers
were evenly spread.
Is Jan right? If so, prove this; if not, use an example to prove that
Jan is wrong.

b) Jan starts out with four different numbers. He also adds each pair of
them to obtain six outcomes. He wants to choose his four numbers in
such a way that the six resulting numbers are evenly spread.
Is this possible? If so, give an example; if not, prove that it is im-
possible.
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2. We consider rectangular boards consisting of m×n cells that are arranged
in m (horizontal) rows and n (vertical) columns. We want to colour each
cell of the board black or white in such a way that the following rules are
obeyed.

• For every row, the number of white cells equals the number of black
cells.

• If a row and a column meet in a black cell, the row and column contain
equal numbers of black cells.

• If a row and a column meet in a white cell, the row and column
contain equal numbers of white cells.

Determine all pairs (m,n) for which such a colouring is possible.

11



Solutions

B-problems

1. 6

2. 6±
√

11

3. 189

4. 16

5. 5

C-problems

1. a) Kees starts with three numbers a < b < c. The three sums are then
ordered as follows: a + b < a + c < b + c. If these are evenly spread,
then the difference (b+c)−(a+c) = b−a equals (a+c)−(a+b) = c−b.
This is exactly the condition for the three original numbers a, b and
c to be evenly spread. Hence, Jan was right.

b) Jan can accomplish this by taking the four numbers 0, 1, 2 and 4 to
start with. The six results then are 0 + 1 = 1, 0 + 2 = 2, 1 + 2 = 3,
0 + 4 = 4, 1 + 4 = 5, and 2 + 4 = 6. These six numbers are evenly
spread. �

2. In the following cases, a colouring meeting all the requirements exists.

• m = n is even
We colour the board as in a chessboard pattern. That is: in each
row and column the squares are alternately black and white. This
colouring meets all requirements.

• n = 2m
We colour all the squares in the left half of the board white, and colour
all the squares in the right half of the board black. This colouring
meets all requirements.
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Now we shall show that these are the only possible board sizes. Consider a
coloured board that meets all requirements. Because each row has equally
many black and white squares, the total number of squares in a row must
be divisible by 2. Write n = 2k. Each row has exactly k white and k black
squares. Now consider the left column. If all its squares are white, then
the column has k white squares because of the second requirement. Hence,
we have m = k in this case. The same happens when all squares in the
left column are black. If there are both black and white squares in the left
column, then there must be exacly k white and k black squares because of
the second requirement. Hence, we find m = 2k = n in this case.

We conclude that for a pair (m,n) there exists a colouring if and only if
n = 2m or if m = n and n is even. �
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Final Round, September 2015

Problems

1. We make groups of numbers. Each group consists of five distinct numbers.
A number may occur in multiple groups. For any two groups, there are
exactly four numbers that occur in both groups.

(a) Determine whether it is possible to make 2015 groups.

(b) If all groups together must contain exactly six distinct numbers, what
is the greatest number of groups that you can make?

(c) If all groups together must contain exactly seven distinct numbers,
what is the greatest number of groups that you can make?

2. On a 1000×1000-board we put dominoes, in such a way that each domino
covers exactly two squares on the board. Moreover, two dominoes are not
allowed to be adjacent, but are allowed to touch in a vertex.
Determine the maximum number of dominoes that we can put on the board
in this way.
Attention: you have to really prove that a greater number of dominoes is
impossible.

3.

A D

B C

P R

Q

S
Version for junior students
In quadrilateral ABCD sides BC and AD are
parallel. In each of the four vertices we draw an
angular bisector. The angular bisectors of angles
A and B intersect in point P , those of angles B
and C intersect in point Q, those of angles C and D intersect in point R,
and those of angles D and A intersect in point S. Suppose that PS is
parallel to QR.
Prove that |AB| = |CD|.
Attention: the figure is not drawn to scale.
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3.

A B C

D

E

S

Version for senior students
Points A, B, and C are on a line in this order.
Points D and E lie on the same side of this line,
in such a way that triangles ABD and BCE are
equilateral. The segments AE and CD intersect
in point S.
Prove that ∠ASD = 60◦.

4. Find all pairs of prime numbers (p, q) for which

7pq2 + p = q3 + 43p3 + 1.

5. Given are (not necessarily positive) real numbers a, b, and c for which

|a− b| ≥ |c|, |b− c| ≥ |a|, and |c− a| ≥ |b|.

Here |x| is the absolute value of x, i.e. |x| = x if x ≥ 0 and |x| = −x if
x < 0.
Prove that one of the numbers a, b, and c is the sum of the other two.

15



Solutions

1. (a) It is possible to make 2015 groups. For example, take the 2015 groups
{−4,−3,−2,−1, i}, where i runs from 1 to 2015. Each group consists
of five distinct numbers, as required, and any two groups have exactly
four numbers in common: −4, −3, −2, and −1.

(b) Using six available numbers, there are only six possible groups of
five numbers (each obtained by leaving out one of the six numbers).
Those six groups do satisfy the requirement that any two of them
have exactly four numbers in common. We conclude that six is the
greatest number of groups we can make in this case.

(c) A way to make three groups is to take {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, and
{1, 2, 3, 4, 7}.
More than three groups is not possible. Indeed, suppose we have
four or more groups. The first two groups are A = {a, b, c, d, e} and
B = {a, b, c, d, f}, where a, b, c, d, e, and f are distinct numbers.
Then there must be a third group C containing a seventh number g.
The remaining four numbers in C must be in both A and B, hence
C = {a, b, c, d, g}.
Now consider a hypothetical fourth group D. This group cannot
contain the number g since otherwise, using a similar reasoning as
for C, we would have D = {a, b, c, d, g}. Because D does not contain
the number g, it must contain the remaining four numbers a, b, c,
and d from C. Comparison with groups A and B then shows that D
can contain neither e nor f . It follows that besides a, b, c, and d, D
cannot contain a fifth number, contradicting the requirements.

We conclude that the greatest number of groups we can make is three.

2. A maximum of 250,000 dominoes can fit on the board. We first show to
place this number of dominoes on the board. In each row we put 250
dominoes with two empty squares in between consecutive dominoes. In
the odd numbered rows we start with a domino and end with two empty
squares (since the number of squares in a row is a multiple of four). In
the even numbered rows we start with two empty squares and end with
a domino. Thus, we place a total of 1000 · 250 = 250,000 dominoes, see
the figure. Clearly, no two dominoes in the same row are adjacent, and
dominoes in adjacent rows touch in a vertex, at most.
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To complete the proof, we need to show that it is not possible to place more
than 250,000 dominoes on the board. Partition the board into 500×500
patches consisting of 2×2 squares each. Of each patch, at most two out of
the four squares can be covered by dominoes since otherwise two dominoes
would be adjacent. Hence, no more than 2 ·500 ·500 = 500,000 squares can
be covered by dominoes. This shows that no more than 250,000 dominoes
can fit on the board.

3.

A D

B C

P R

Q

S

H

Version for junior students
The intersection of CQ and AD is called
H. We have 1

2∠BAD = ∠SAD = ∠CHD
(corresponding angles). Also, we have
∠CHD = ∠HCB = 1

2∠DCB (altern-
ate interior angles). It follows that the
two angles ∠BAD and ∠DCB of quad-
rilateral ABCD are equal. This implies that
∠BAD + ∠ADC = ∠DCB + ∠ADC = 180◦, because AD and BC are
parallel. From ∠BAD+∠ADC = 180◦ it follows that AB and CD are par-
allel. Hence, ABCD is a parallelogram. We conclude that |AB| = |CD|.

3.

A B C

D

E

S

Version for senior students
Observe that ∠ABE = 180◦ − ∠EBC =
120◦ and ∠DBC = 180◦ − ∠ABD = 120◦.
Furthermore, |AB| = |DB| and |BE| = |BC|.
It follows that triangles ABE and DBC are
congruent (SAS). In particular, ∠EAB =
∠CDB.

Observe that ∠ASD = 180◦ − ∠SDA− ∠DAS =
180◦ − (60◦ + ∠CDB) − ∠DAE. Substituting ∠CDB = ∠EAB shows
that ∠ASD = 120◦ − ∠EAB − ∠DAE = 120◦ − 60◦ = 60◦.
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4. We start by observing that in the equation 7pq2 + p = q3 + 43p3 + 1 the
numbers p and q cannot both be odd. Otherwise, 7pq2 + p would be even,
while q3 + 43p3 + 1 would be odd. Since 2 is the only even prime number,
we conclude that p = 2 or q = 2.

In the case p = 2, we obtain the equation 14q2+2 = q3+344+1, which can
be rewritten as q3 − 14q2 = −343. This shows that q must be a divisor of
343 = 73, hence q = 7. Substitution confirms that (p, q) = (2, 7) is indeed
a solution since 14q2 +2 = 2 ·7 ·72 +2 and q3 +344+1 = 73 +(73 +1)+1 =
2 · 73 + 2 are equal.

Next, we consider the case that q = 2 and p is odd. This results in the
equation 28p+p = 8 + 43p3 + 1. Since p is odd, we see that 28p+p is odd,
while 8 + 43p3 + 1 is even. Hence, no solutions exist in this case.

We conclude that (p, q) = (2, 7) is the only solution.

5. The system of inequalities is symmetric in the variables a, b, and c: if
we exchange two of these variables, the system remains unchanged (up to
rewriting it). For example, if we exchange variables a and b, we obtain

|b− a| ≥ |c|, |a− c| ≥ |b|, |c− b| ≥ |a|.

Since |b − a| = |a − b|, |a − c| = |c − a|, and |c − b| = |b − c|, this can be
rewritten as

|a− b| ≥ |c|, |c− a| ≥ |b|, |b− c| ≥ |a|,

obtaining the original system of inequalities. Due to this symmetry, we
may assume without loss of generality that a ≥ b ≥ c.

First observe that c ≤ 0. Indeed, if a ≥ b ≥ c > 0 would hold, then
|b − c| ≥ |a| would imply that b − c ≥ a. Rewriting gives b ≥ a + c > a,
which contradicts the fact that b ≤ a.

Next, consider the following series of inequalities.

|a|+ |c| = |a| − c ≥ a− c = (a− b) + (b− c) = |a− b|+ |b− c| ≥ |c|+ |a|.

Since the first and the last term are equal, we can conclude that all of the
above inequalities must be equalities. In particular, a − b = |a − b| = |c|.
Since c ≤ 0, this implies that a + c = b. This shows that one of the three
numbers equals the sum of the other two.
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BxMO Team Selection Test, March 2016

Problems

1. For a positive integer n that is not a power of two, we define t(n) as the
greatest odd divisor of n and r(n) as the smallest positive odd divisor of
n unequal to 1. Determine all positive integers n that are not a power of
two and for which we have

n = 3t(n) + 5r(n).

2. Determine all triples (x, y, z) of non-positive real numbers that satisfy the
following system of equations

x2 − y = (z − 1)2,

y2 − z = (x− 1)2,

z2 − x = (y − 1)2.

3. Let 4ABC be a right-angled triangle with ∠A = 90◦ and circumcircle Γ.
The inscribed circle is tangent to BC in point D. Let E be the midpoint
of the arc AB of Γ not containing C and let F be the midpoint of the arc
AC of Γ not containing B.

(a) Prove that 4ABC ∼ 4DEF .

(b) Prove that EF goes through the points of tangency of the incircle to
AB and AC.

4. The Facebook group Olympiad training has at least five members. There
is a certain integer k with following property: for each k-tuple of members
there is at least one member of this k-tuple friends with each of the other
k− 1. (Friendship is mutual: if A is friends with B, then also B is friends
with A.)

(a) Suppose k = 4. Can you say with certainty that the Facebook group
has a member that is friends with each of the other members?

(b) Suppose k = 5. Can you say with certainty that the Facebook group
has a member that is friends with each of the other members?

5. Determine all pairs (m,n) of positive integers for which

(m + n)3 | 2n(3m2 + n2) + 8.

19



Solutions

1. Let p be the smallest odd prime divisor of n. Then r(n) = p holds. Now
we can write n = 2tmp with m odd and t ≥ 0. Then we have t(n) = pm,
hence the given equality becomes 2tmp = 3pm + 5p, or (2t − 3)mp = 5p,
hence (2t − 3)m = 5. We see that m must be a divisor of 5, hence m = 1
or m = 5. If m = 1 holds, then 2t = 8, hence t = 3. We get that n = 8p
with p an odd prime number. This is indeed a solution for all odd prime
numbers p. If m = 5 holds, then 2t = 4, hence t = 2. We get that n = 4·5·p
with p an odd prime. This only gives a solution if p is the smallest odd
prime divisor, which is if p = 3 or p = 5. In this way, we find two more
solutions: n = 60 and n = 100. �

2. Expanding the right hand sides and adding up all equations gives

x2 + y2 + z2 − (x + y + z) = x2 + y2 + z2 − 2(x + y + z) + 3,

hence x + y + z = 3. Without loss of generality we assume that x ≤ y, z.
Then 0 ≤ x ≤ 1 holds. Therefore, x2 ≤ x, hence x2 − y ≤ x − y ≤ 0. On
the other hand we have x2 − y = (z − 1)2 ≥ 0. Thus, equality has to hold
in x2 ≤ x and x− y ≤ 0. From the first equality we obtain x = 0 or x = 1
and the second one yields x = y. Suppose x = y = 0, then x + y + z = 3
implies that z = 3. But then we do not have x2 − y = (z − 1)2, which is
a contradiction. We are only left with the case x = y = 1. Then we have
z = 3− 1− 1 = 1. This triple indeed satisfies all equations and hence it is
the only solution. �

3. (a) The midpoint E of the arc AB not containing C, lies on the angu-
lar bisector CI. In the same way, F lies on BI. We have ∠IFC =
∠BFC = ∠BAC = 90◦, because ABCF is a cyclic quadrilateral
and ∠IDC = 90◦ because D is the point of tangency of the in-
circle to BC. Hence, ∠IFC + ∠IDC = 180◦, which yields that
FIDC is a cyclic quadrilateral. Now we have ∠DFI = ∠DCI =
1
2∠ACB, while also ∠IFE = ∠BFE = ∠BCE = 1

2∠ACB. Hence,
∠DFE = 1

2∠ACB + 1
2∠ACB = ∠ACB. Analogously, we have

∠DEF = ∠ABC. Altogether, this yields 4DEF ∼ 4ABC.
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(b) Let S be the intersection of EF and AB. In the previous part we
already saw that BF is the angular bisector of ∠DFE = ∠DFS.
Hence, BF is also the angular bisector of ∠ABC = ∠SBD. There-
fore, 4BDF ∼= 4BSF because of (ASA). This means that |BD| =
|BS|. On the other hand, the distances of B to the points of tangency
of the incircle to BC and BA are equal and one of these points of
tangency is D, hence the other point of tangency must be S. Hence,
EF goes through the point of tangency of the incircle to AB. Ana-
logously, it also goes through the point of tangency of the incircle to
AC. �

4. (a) Yes, you can. If everybody is friends with everyone else, then we are
done. Hence, suppose that there are two members, say A and B, who
are not friends with each other. If we consider a group of four with A,
B, and two other members, then one of the other two must be friends
with the other and with A and B. In particular, the two others are
friends with each other. This holds for any two members (unequal to
A and B) that we choose, hence each pair not containing A and B is
friends with each other. Now take A, B, C, and D and suppose that
C is friends with A, B, and D. Moreover, he is also friends with all
other members of the group, hence C is someone who is friends with
everybody else.

(b) No, this is not possible. We give a counterexample. Suppose that the
Facebook group has six members, called A, B, C, D, E, and F . They
are all friends with each other, except for the pair (A,B), the pair
(C,D) and the pair (E,F ). This means that no member is friends
with every other member. If we take a group of five then without loss
of generality this is A, B, C, D, and E. Here we can find someone
who is friends with the other four, namely E. Hence, the condition is
met. �
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5. Suppose that the quotient of 2n(3m2 +n2) + 8 and (m+n)3 is unequal to
1. Then it is at least 2, hence we have

(m + n)3 ≤ n(3m2 + n2) + 4,

or
m3 + 3m2n + 3mn2 + n3 ≤ 3m2n + n3 + 4,

or
m3 + 3mn2 ≤ 4.

This yields m < 2, and therefore m = 1. Then we have 1 + 3n2 ≤ 4, and
hence also n = 1. The pair (m,n) = (1, 1) is indeed a solution, because
23 | 2 · 4 + 8 holds.

The other possibility is that the quotient does equal 1. Then we have

(m + n)3 = 2n(3m2 + n2) + 8,

or
m3 + 3m2n + 3mn2 + n3 = 6m2n + 2n3 + 8,

or
m3 − 3m2n + 3mn2 − n3 = 8.

The left hand side we can factor as (m− n)3. Hence, we have m− n = 2,
or m = n+ 2. From the previous calculations it also follows that (m,n) =
(n + 2, n) is indeed a solution for all positive integers n.

We conclude that the solutions are: (m,n) = (1, 1) and (m,n) = (n+ 2, n)
for n ≥ 1. �
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IMO Team Selection Test 1, June 2016

Problems

1. Let ABC be an acute triangle. Let H be the foot on AB of the altitude
through C. Suppose that |AH| = 3|BH|. Let M and N be the midpoints
of the segments AB and AC, respectively. Let P be a point such that
|NP | = |NC| and |CP | = |CB| and such that B and P lie on opposite
sides of the line AC.

Show that ∠APM = ∠PBA.

2. Let n be a positive integer, and consider a square of dimensions 2n×2n. We
cover this square by a number of (at least 2) rectangles, without overlaps,
and in such a way that every rectangle has integer dimensions and a power
of two as area. Show that two of the rectangles used must have the same
dimensions. (Two rectangles are said to have the same dimensions if they
have the same height and the same width, without rotating them.)

3. Find all positive integers k for which the equation

lcm(m,n)− gcd(m,n) = k(m− n)

does not have any solutions (m,n) in positive integers with m 6= n.

4. Find all functions f : R→ R satisfying

f(xy − 1) + f(x)f(y) = 2xy − 1

for all x, y ∈ R.
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Solutions

1. The configuration is unique. As N is the midpoint of AC, we have |NC| =
|NA|. Since |NP | = |NC| by assumption, it follows that N is the centre
of a circle passing through A, C, and P . Using Thales’s theorem, we find
∠APC = 90◦.

Since |AH| = 3|BH| and M is the midpoint of AB, we have |MH| =
|BH|. Moreover, because ∠CHB = 90◦ = ∠CHM , the triangles CHB
and CHM are congruent, and therefore |CM | = |CB|. By assumption,
|CP | = |CB|, so C is the centre of a circle through P , M , and B. As
∠APC = 90◦, the line AP is tangent to this circle. By the tangent-chord
theorem we now have ∠APM = ∠PBM = ∠PBA. �

2. First note that a rectangle with integer dimensions has a power of two as
area if and only if the dimensions are powers of two.

Consider a covering in which no two rectangles have the same dimensions.
We first show that then there are no rectangles of width 1. Suppose to
the contrary that such a rectangle occurs in the covering. Colour every
square covered by a rectangle of width 1 with the colour blue. Let M be
the number of blue squares. Then M is the sum of all rectangles of width
1, so it is the sum of (at least one) distinct powers of 2. Let 2k be the
largest one. As 2k − 1 = 2k−1 + 2k−2 + · · · + 2 + 1, there are fewer than
2k blue squares not covered by this rectangle of width 1 and height 2k, so
there is at least one row which contains a blue square of this rectangle of
height 2k and no other blue square. But the remaining squares in this row,
of which there are an odd number, must then be covered by rectangles of
even width, which is a contradiction. So there are no rectangles of width
1. Analogously, there are no rectangles of height 1, either. Therefore all
rectangles have an even width and an even height.

Now consider the smallest n for which a covering as in the problem exists
in which no two rectangles have the same dimension. As all rectangles
have an even width and an even height, we can divide all dimensions (of
both the square and the rectangles) by 2 to obtain a square with smaller
dimensions covered by rectangles with integer dimensions, each having a
power of two as area. Since no two rectangles had the same dimensions,
this contradicts the minimality of n. �
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3. Let d = gcd(m,n) and write m = da and n = db. Then lcm(m,n) ·
gcd(m,n) = mn, so we can rewrite the given equation as

da·db
d − d = k(da− db),

or equivalently,
ab− 1 = k(a− b). (1)

So from now on we consider the following equivalent problem: find all
positive integers k for which (1) has no solutions (a, b) in positive integers
with a 6= b and gcd(a, b) = 1. Note that if a pair (a, b) satisfies this
equation, then it automatically follows that gcd(a, b) = 1; suppose that
t | a and t | b, then we have t | ab and t | a− b, so t | 1, and we deduce that
a and b have no common divisor greater than 1.

First suppose that k ≥ 3. We claim that (a, b) = (k2 − k − 1, k − 1) is a
solution. Indeed, we have

ab− 1 = a(k − 1)− 1 = ka− a− 1 = ka− k2 + k = k(a− k + 1) = k(a− b).

Moreover, as noted earlier, it follows that gcd(a, b) = 1, so it remains to
check that a and b are positive and distinct. As k ≥ 3, we have b = k−1 ≥
2, and a = k2−k−1 ≥ 2k−k−1 = k−1 ≥ 2, so a and b are both positive.
If a = b, then k2 − k − 1 = k − 1, so k2 = 2k, and therefore k = 2, which
is a contradiction. Therefore (a, b) is as required. Hence (1) has a solution
(a, b) in positive integers with a 6= b and gcd(a, b) = 1.

Now suppose that k = 1. We claim that (a, b) = (2, 1) is a solution.
Clearly, a and b are positive and distinct, and gcd(a, b) = 1. Moreover, we
have

ab− 1 = 2− 1 = 1 = 1 · (2− 1) = k(a− b).

Hence (1) has a solution (a, b) in positive integers with a 6= b and gcd(a, b) =
1.

Finally, suppose that k = 2. Then the equation (1) becomes

ab− 1 = 2(a− b).

The right hand side is at most 2a− 2 as b is a positive integer, so ab− 1 ≤
2a−2, hence ab < 2a, and therefore b < 2. We deduce from this that b = 1.
The equation then becomes a− 1 = 2(a− 1), which implies a− 1 = 0. We
therefore must have a = 1 and b = 1, so a = b. Therefore there are no
solutions (a, b) for (1) in positive integers with a 6= b and gcd(a, b) = 1.

We conclude that the unique k for which the given equation has no solu-
tions (m,n) in positive integers with m 6= n, is k = 2. �
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4. If f were constant, then the left hand side is constant, whereas the right
hand side is not, this is a contradiction. Therefore f is not constant.
Substitute x = 0. This gives f(−1) + f(0)f(y) = −1, so f(0)f(y) is a
constant function in y. As f is not constant, it follows that f(0) = 0, and
therefore it also follows that f(−1) = −1. Substituting x = y = 1 gives:
f(0) + f(1)2 = 1, so we have either f(1) = 1 or f(1) = −1.

Now substituting y = 1+ 1
x with x 6= 0 gives f(x+1−1) = f(x)f(1+ 1

x ) =
2x + 2− 1, so we have

f(x)f
(
1 + 1

x

)
= 2x + 1− f(x) for all x 6= 0. (2)

Substituting y = 1
x with x 6= 0 gives f(1 − 1) + f(x)f( 1

x ) = 2 − 1, so we
have

f(x)f
(
1
x

)
= 1 for all x 6= 0. (3)

Substituting y = 1, x = z+1 gives f(z+1−1)+f(z+1)f(1) = 2z+2−1,
so we have

f(z) + f(z + 1)f(1) = 2z + 1 for all z.

In this last equation, substitute z = 1
x with x 6= 0, and then multiply both

sides with f(x); we obtain

f(x)f
(
1
x

)
+ f

(
1
x + 1

)
f(1)f(x) = 2

xf(x) + f(x) for all x 6= 0.

Using (3) and (2), we can rewrite the first and second term respectively as
follows:

1 + 2xf(1) + f(1)− f(x)f(1) = 2
xf(x) + f(x) for all x 6= 0.

This we can rewrite as

f(x) ·
(
2
x + 1 + f(1)

)
= 1 + 2xf(1) + f(1) for all x 6= 0.

If the second factor of the left hand side is non-zero, then we can divide
by this, so we obtain

f(x) =
1 + 2xf(1) + f(1)

2
x + 1 + f(1)

if x 6= 0 and 2
x + 1 + f(1) 6= 0.

Recall that we had two possible values for f(1). First suppose that f(1) =
1. Then we have

f(x) =
2 + 2x
2
x + 2

= x if x 6= 0 and 2
x + 2 6= 0.
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Note that 2
x + 2 = 0 only if x = −1. As we already know that f(−1) = −1

and f(0) = 0, it follows that f(x) = x for all x. We check that this f
satisfies the original equation: the left hand side then is xy − 1 + xy =
2xy − 1, so this f is indeed a solution.

Suppose on the other hand that f(1) = −1. Then we have

f(x) =
−2x

2
x

= −x2 if x 6= 0 and 2
x 6= 0.

Note that 2
x = 0 is impossible. Hence, as f(0) = 0, we deduce that

f(x) = −x2 for all x. We check that this f satisfies the original equation:
the left hand side then is −x2y2 − 1 + 2xy + x2y2 = 2xy − 1, so this f is
indeed a solution.

We conclude that there are two solutions, namely f(x) = x for all x and
f(x) = −x2 for all x. �
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IMO Team Selection Test 2, June 2016

Problems

1. Prove that for all positive reals a, b, c we have:

a +
√
ab +

3
√
abc ≤ 4

3 (a + b + c).

2. Determine all pairs (a, b) of integers having the following property: there
is an integer d ≥ 2 such that an + bn + 1 is divisible by d for all positive
integers n.

3. Let 4ABC be an isosceles triangle with |AB| = |AC|. Let D, E and
F be points on line segments BC, CA and AB, respectively, such that
|BF | = |BE| and such that ED is the exterior angle bisector of ∠BEC.
Prove that |BD| = |EF | if and only if |AF | = |EC|.

4. Determine the number of sets A = {a1, a2, . . . , a1000} of positive integers
satisfying a1 < a2 < . . . < a1000 ≤ 2014, for which we have that the set

S = {ai + aj | 1 ≤ i, j ≤ 1000 en i + j ∈ A}

is a subset of A.
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Solutions

1. We can write 3
√
abc as 3

√
a
4 · b · 4c. Applying the inequality of the arithmetic

and geometric mean on the positive reals a
4 , b and 4c yields

3
√
abc = 3

√
a

4
· b · 4c ≤

a
4 + b + 4c

3
=

a

12
+

b

3
+

4c

3
.

Next we apply AM-GM on a
2 and 2b:

√
ab =

√
a

2
· 2b ≤

a
2 + 2b

2
=

a

4
+ b.

We add up these two inequalities and we also add a to both sides to obtain:

a +
√
ab +

3
√
abc ≤ a +

a

4
+ b +

a

12
+

b

3
+

4c

3
=

4

3
(a + b + c).

�

2. Consider a pair (a, b) that has the property, with the corresponding d. Let
p be a prime divisor of d (which exists as d ≥ 2). Because d | an + bn + 1
for all n, we also have p | an + bn + 1 for all n. Consider n = p− 1. Then
an ≡ 0 mod p holds if p | a and an ≡ 1 mod p holds if p - a, because of
the Fermat’s little theorem. Similarly, this holds for b. Hence, an + bn + 1
can attain the values 1, 2 and 3 modulo p. On the other hand, it must be
congruent to 0 modulo p, hence p = 2 or p = 3. We consider the two cases.

Suppose that p = 3. Then we must have 3 - a, 3 - b. The case n = 1
moreover yields that 3 | a + b + 1, hence a + b ≡ 2 mod 3. These two
requirements together are equivalent to a ≡ b ≡ 1 mod 3. In this case, it
is true that for all positive integers n we have an + bn + 1 ≡ 1 + 1 + 1 ≡ 0
mod 3, hence such a pair has the property, with d = 3.

Now suppose that p = 2. Then 2 must be a divisor of exactly one of a and b.
In this case we have for all positive integers n that an+bn+1 ≡ 0+1+1 ≡ 0
mod 2, hence each such pair has the property, with d = 2.

We conclude that these are the pairs that have the property: (a, b) with
a ≡ b ≡ 1 mod 3, (a, b) with a ≡ 1, b ≡ 0 mod 2, and (a, b) with a ≡ 0,
b ≡ 1 mod 2. �

3. From the data and the angle bisector theorem it follows that

|BF |
|BD|

=
|BE|
|BD|

=
|CE|
|CD|

.
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As 4ABC is isosceles, we have ∠FBD = ∠ECD, which yields together
with the first equality that 4BFD ∼ 4CED. This yields ∠BFD =
∠CED = ∠BED, hence BDEF is a cyclic quadrilateral. It is well-known
that a cyclic quadrilateral BDEF is a trapezoid with DE ‖ BF if and
only if |BD| = |EF |. We have |AF | = |EC| if and only if |BF | = |AE| (as
|AB| = |AC|), that is to say, if and only if |EA| = |EB|, which holds if and
only if ∠BAE = ∠ABE. Because we have 2∠BED = ∠BEC = ∠BAE +
∠ABE by the exterior angle theorem, ∠BAE = ∠ABE is equivalent to
∠BED = ∠ABE which is again equivalent to DE ‖ BF . To summarise,
|BD| = |EF | holds if and only if DE ‖ BF which holds if and only if
|AF | = |EC|. �

4. We will prove that there are 214 such sets. In particular, we will prove that
the sets A that satisfy these conditions are of the form B ∪ C, with C a
subset of {2001, . . . , 2014} and B = {1, 2, . . . , 1000− |C|}. The sets of this
form will be called “nice”. As there are 214 subsets of {2001, . . . , 2014},
there are 214 nice sets.

First we will show that each nice set A satisfies the conditions. Suppose
that i, j ≤ 1000 with i+j ∈ A. Then we have i+j ≤ 2000, hence i+j ∈ B.
Therefore, there exists a k with k ≤ 1000− |C| such that i + j = ak(= k).
Because ak ≤ 1000 − |C| holds, we also have i, j ≤ 1000 − |C|, hence we
have ai = i and aj = j. That means that ai +aj = i+j = ak is an element
of A. Hence each element of S is an element of A, from which we deduce
that A satisfies the conditions.

We will now show that each set A satisfying the conditions is nice. First
suppose that there exists an integer k with 1 ≤ k ≤ 1000 satisfying ak ∈
{1001, . . . , 2000}. Then we have ak = 1000+i for a certain i with i ≤ 1000,
hence a1000 + ai is a an element of S and hence it must also be an element
of A. However, we have a1000 + ai > a1000, which yields a contradiction.
Hence such an ak cannot occur. This means that A can be written as a
disjoint union B∪C, with C ⊆ {2001, . . . , 2014} and B ⊆ {1, 2, . . . , 1000}.
Let b be the number of elements of B. Then b ≥ 986 holds, because
C has at most 14 elements. In order to prove that A is nice, we must
prove that B = {1, 2, . . . , b}. To prove this it is sufficient to prove that
ab, the maximum of B, equals b. Therefore, suppose the contrary, i.e.
that ab > b. For i with i = ab − b we then have b + i = ab ≤ 1000,
hence i ≤ 1000 − b ≤ 14 < b. Therefore we have ai ≤ 1000 and hence
ab +ai ≤ 2000. Because i+ b = ab ∈ A, we have ab +ai ∈ S ⊂ A, but then
ab+ai is an element of B greater than ab, which was the maximum. This is
a contradiction. Hence, ab = b, from which it follows that B = {1, 2, . . . , b}.
Therefore, A is nice. �
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IMO Team Selection Test 3, June 2016

Problems

1. Let n be a positive integer. In a village, n boys and n girls are living.
For the yearly ball, n dancing couples need to be formed, each of which
consists of one boy and one girl. Every girl submits a list, which consists
of the name of the boy with whom she wants to dance the most, together
with zero or more names of other boys with whom she wants to dance. It
turns out that n dancing couples can be formed in such a way that every
girl is paired with a boy who is on her list.

Show that it is possible to form n dancing couples in such a way that every
girl is paired with a boy who is on her list, and at least one girl is paired
with the boy with whom she wants to dance the most.

2. For distinct real numbers a1, a2, . . . , an, we calculate the n(n−1)
2 sums ai +

aj with 1 ≤ i < j ≤ n, and sort them in ascending order. Find all
integers n ≥ 3 for which there exist a1, a2, . . . , an for which this sequence

of n(n−1)
2 sums form an arithmetic progression (i.e. the difference between

consecutive terms is constant).

3. Let k be a positive integer, and let s(n) denote the sum of the digits
of n. Show that among the positive integers with k digits, there are as
many numbers n satisfying s(n) < s(2n) as there are numbers n satisfying
s(n) > s(2n).

4. Let Γ1 be a circle with centre A and Γ2 be a circle with centre B, with
A lying on Γ2. On Γ2 there is a (variable) point P not lying on AB. A
line through P is a tangent of Γ1 at S, and it intersects Γ2 again in Q,
with P and Q lying on the same side of AB. A different line through Q is
tangent to Γ1 at T . Moreover, let M be the foot of the perpendicular to
AB through P . Let N be the intersection of AQ and MT .

Show that N lies on a line independent of the position of P on Γ2.
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Solutions

1. For each girl, call the boy with whom she wants to dance the most her
favourite.

We solve the problem by induction on n. If n = 1, the only girl will form a
couple with the only boy, who is therefore her favourite. So suppose that
k ≥ 1, and assume that the problem has been solved for n = k.

Consider the case n = k + 1. We distinguish two cases. First suppose
that every boy occurs exactly once as a favourite. In this case we can just
couple every girl to her favourite, and form n dancing couples that way.

In the remaining case, not every boy occurs exactly once as a favourite.
Since there are n favourites and n boys, once of the boys, say X, is not the
favourite of any girl (and someone else is the favourite of more than one
girl). Choose a pairing as in the problem; this exists by assumption. Let
Y be the girl coupled with boy X, and remove X and Y from the village.
There are k boys and k girls left. Note that the pairing chosen still has the
property that every girl is paired with a boy on her list. Moreover, every
girls still has a favourite among the k remaining boys, as boy X is not the
favourite of any girl. Therefore, by the induction hypothesis, we can form
k dancing couples, in such a way that every girl is paired with a boy on
her list, and at least one of the girls is paired with her favourite. Adding
the couple X − Y back in completes the induction. �

2. For n = 3 we consider (a1, a2, a3) = (1, 2, 3). The sums of pairs are in this
case 3, 4, and 5, and these form an arithmetic progression. For n = 4 we
consider (a1, a2, a3, a4) = (1, 3, 4, 5). The sums of pairs are in this case 4,
5, 6, 7, 8, and 9, and these form an arithmetic progression.

Now suppose that n ≥ 5, and suppose that a1, a2, . . . , an satisfies the
condition. Without loss of generality, we assume that a1 < a2 < · · · < an.
Let d be the difference between two consecutive terms of the corresponding
arithmetic progression. Note that the smallest sum is a1 + a2, and the
second smallest is a1 + a3. As the difference between these sums is d, we
have a3 − a2 = d. The largest sum is an + an−1 and the second largest is
an + an−1, therefore we have an−1 − an−2 = d as well. Hence

a2 + an−1 = (a3 − d) + (an−2 + d) = a3 + an−2.

If n ≥ 6, then the left hand side and the right hand side are sums of distinct
pairs, but the difference between such sums must be at least d. This is a
contradiction. Therefore there are no solutions for n ≥ 6.
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For n = 5, we have a3 − a2 = d and a4 − a3 = d. Therefore the third
smallest sum must be a1 + a4 (as this one is d larger than a1 + a3), and
the third largest sum must be a5 + a2. Between these, we have a2 + a3 <
a2 + a4 < a3 + a4, and the difference between these consecutive sums is d,
and we also have a1 + a5. Therefore a1 + a5 is either the fourth smallest
sum or the fourth largest sum.

Without loss of generality, assume that a1 + a5 is the fourth smallest sum.
Then we have

a1 + a2 < a1 + a3 < a1 + a4 < a1 + a5 < a2 + a3

< a2 + a4 < a3 + a4 < a2 + a5 < a3 + a5 < a4 + a5.

Then (a5 + a2)− (a3 + a4) = d, so a5 − a4 = d + a3 − a2 = d + d. On the
other hand, (a1 + a5) − (a1 + a4) = d. This is a contradiction. Therefore
there are no solutions for n = 5 either.

We conclude that there exist a1, a2, . . . , an satisfying the condition if and
only if n = 3 or n = 4. �

3. We show that among the positive integers with at most k digits there are
as many numbers n satisfying s(n) < s(2n) as there are numbers satisfying
s(n) > s(2n). The required result then follows by combining this result for
k and for k − 1.

We pair each number n with at most k digits to another number m with
at most k digits. Let m = 999 · · · 999− n, where the first number consists
of k nines, so that m has at most k digits. We show that s(m)− s(2m) =
s(2n)− s(n).

To calculate m, we subtract n from 999 · · · 999, in which every digit of n
is of course at most 9. Therefore every digit of m is equal to 9 minus
the corresponding digit of n. Here we consider both m and n as numbers
having precisely k digits by adding zeroes to the left if necessary. Hence
s(m) + s(n) = s(999 · · · 999) = 9k.

Next, consider 2m and 2n. We have 2m = 1999 · · · 998− 2n. Consider 2m
and 2n as numbers having exactly k + 1 digits, where the first digit of 2n
is either a 0 or a 1. Subtracting that from 1999 · · · 998, we find that the
first digit of 2m is either 1 − 1 = 0 or 1 − 0 = 1. The last digit of 2m is
8 minus the last digit of 2n, which cannot be a 9 as 2n is even. All other
digits of 2m are equal to 9 minus the corresponding digit of 2n. Therefore,
we have s(2m) + s(2n) = s(1999 · · · 998) = 1 + 9(k − 1) + 8 = 9k. Hence
s(m) + s(n) = s(2m) + s(2n), so s(m)− s(2m) = s(2n)− s(n).
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Now we see that s(m) > s(2m) if and only if s(n) < s(2n). Moreover, no
number is paired to itself as 999 · · · 999 is odd. Hence there are as many
numbers with s(n) < s(2n) as there are numbers with s(n) > s(2n). �

4. Point P lies outside Γ1, since otherwise there is no tangent PS to Γ1. Since
P and Q lie on the same side of AB, we see that S lies on the part of Γ1

on that same side of AB, and that S lies outside Γ2. (In the extremal case
in which P lies on AB, we see that S an intersection point of Γ1 and Γ2 by
Thales’s theorem.) Consider the configuration in which Q lies between P
and S; then Q lies on the short arc AP . The other configuration is treated
analogously. (Note that by assumption P 6= Q.)

We show that N lies on the radical line of Γ1 and Γ2. We have ∠ASP =
90◦ = ∠AMP , so ASPM is a cyclic quadrilateral by the Thales’s theorem.
Hence we have

∠PSM = ∠PAM = ∠PAB = 90◦ − 1
2∠ABP

= 90◦ − (180◦ − ∠AQP ) = 90◦ − ∠AQS,

where in the second to last step, we applied the inscribed angle theorem.
Moreover, using the sum of angles in 4AQS, we find that 90◦ −∠AQS =
∠QAS. As ASQT is a cyclic quadrilateral with |QT | = |QS| (since QS
and QT are both tangent to Γ1), we have ∠QAS = ∠QTS = ∠QST . To
summarise, we have ∠PSM = 90◦ − ∠AQS = ∠QAS = ∠QST = ∠PST .
Hence S, T , and M are collinear.

From this, it follows that N is the intersection of ST and AQ. In the
cyclic quadrilateral ASQT we find, using the power of a point theorem,
that NT ·NS = NA ·NQ. Note that the left hand side of N is the power
of N with respect to Γ1 and that the right hand side is the power of N
with respect to Γ2. Therefore N lies on the radical line of Γ1 and Γ2. �
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Problems

Part 1

1. A booklet is made by forming a stack of 11 sheets of paper and then folding
the stack in half. The pages of the booklet are numbered, like in a book,
from 1 to 44, where the front cover gets the number 1 and the back cover
gets number 44. Now the booklet is opened up and from the stack of 11
sheets we take the one in the middle.
Adding up the four numbers on this sheet, what outcome do we get?

A) 82 B) 84 C) 86 D) 88 E) 90

2. We draw a circle through the four vertices of a square
of area 1. Then, we draw a square around this circle
in such a way that that all the sides are tangent to the
circle.
What is the area of this square?

A) 10
7 B) 3

2 C) 5
3 D) 2 E) 100

49

3. Quintijn has three equally big and equally filled bottles of wine. Bottles
1 and 3 contain the same kind of white wine, while bottle 2 contains red
wine. Quintijn now pours a small amount of wine from bottle 1 into bottle
2. Next, after mixing the content of bottle 2 really well, he pours the same
amount from bottle 2 into bottle 3. In the same way, he pours the same
amount of wine from bottle 3 into bottle 1. Now all bottles contain the
same amount of wine as they did at the start. However, the content of
each bottle is polluted with wine of the other type.
Which bottle is polluted most?

A) bottle 1 B) bottle 2 C) bottle 3
D) all three equally E) you cannot determine this
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4. Aad, Bep, Cor, Dirk, Eva, and Fenna are sitting in this order in a circle
around the campfire. Aad has a torch. He gives it to Bep who is sitting
one place to his right. She gives the torch to Dirk, who is sitting two places
to her right. He gives the torch to Aad, who is sitting three places to his
right, et cetera. It happens that someone must give the torch to the person
sitting, for instance, six or twelve positions to the right. Then this person
gives the torch to him- or herself.
When Dirk is given the torch for the hundredth time, who does he pass
the torch to?

A) Aad B) Bep C) Cor D) Dirk E) Eva

5. When a cube is cut with a plane, a cross section is created. This figure is
formed by the lines where the plane cuts the facets of the cube. In the left
figure, you can see an example in which the cross section is a triangle.

In the right figure, a flattened cube is drawn with the cut lines drawn on
the facets.
What is the cross section of the cube corresponding to this figure?

A) a triangle B) a square C) a rectangle, but not a square
D) a hexagon E) a parallelogram, but not a rectangle

6. On a machine there are three buttons. The first button can be used to
add 20 marbles to a tray in the machine. The second button can be used
to increase the number of marbles in the tray by 20%, after which 15
additional marbles are added. The third button can be used to increase
the number of marbles in the tray by 50%. If pressing a button would
cause the number of marbles to be non-integral, the pressing of the button
is not allowed. In the beginning the tray is empty. After some button
presses, there are 91 marbles in the tray.
How often has the first button been pressed?

A) 0 B) 1 C) 2 D) 3 E) 4
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7. Ria, Sophie, and Tine are sitting around a round table in clockwise order
and are playing a game with chips. Ria starts with 3 chips, Sophie with 4
chips, and Tine with 5 chips. In each round they simultaneously give chips
to one of their neighbours. Each player can choose to give 2 chips to her
right neighbour or 1 chip to her left neighbour. If someone has no more
chips, the game ends.
Is it possible for the players to have the same number of chips after some
number of rounds, and if this is the case, how many rounds have to be
played at least to accomplish this?

A) no, it is impossible. B) yes, 3 rounds. C) yes, 6 rounds.
D) yes, 7 rounds. E) yes, 8 rounds.

8. Six people are sitting around a round table. Each of them is either a
knight or a knave. Knights always speak the truth, while knaves always
lie. Each of them has a card containing a number. All numbers are different
and everyone knows the numbers of their two neighbours. When asked:
“Is your number greater than the numbers of both your neighbours?”,
everyone answers with “Yes”. When asked: “Is your number smaller than
the numbers of both your neighbours?”, at least one person answers “Yes”
and at least one answers “No”.
What are the possible numbers of people answering “Yes” to this second
question?

A) 1 or 2 B) 1 or 3 C) 2 or 3 D) 2 or 4 E) 2, 3, or 4
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Part 2

1. In the figure on the right there is a square with side
length 3. The square is divided into nine equal squares.
Then, another line is drawn that creates a pentagon
inside the middle square (coloured grey).
What is the area of this pentagon?

2. A palindromic number is a number that is the same when read from left
to right as when read from right to left. A number does not start with the
digit 0. To a six-digit palindromic number the palindromic number 21312
is added. The result is a seven-digit palindromic number.
What is this resulting number?

3. Using exactly six zeros and six ones we create two or more numbers which
we then multiply. For instance, we could get 10× 10× 10× 10× 10× 10 =
1,000,000, or 10,011× 100× 1,100 = 1,101,210,000.
What is the largest possible result we could get in this way?

4. Pieter is staying at a hotel. The hotel has a ground floor (numbered 0) and
seven additional floors numbered 1 to 7. Pieter wants to make a trip by
elevator. He starts on one of the floors 1 to 7 and ends at the ground floor.
In between, he travels from floor to floor, never stopping at a previously
visited floor and never stopping at the ground floor (except for the last
stop).

The distance between any two consecutive floors is 3 metres. If, for ex-
ample, Pieter starts at floor 3, then goes to floor 6, then to floor 4 and
finally to the ground floor, he travels a total of (3 + 2 + 4)×3 = 27 metres.
What is the maximum length of his trip in metres?

5. How many 3-digit numbers (the first digit cannot be 0) have the property
that adding all the digits gives a strictly greater result than multiplying
all the digits?
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6. The mayor of a town wants to build a network of express trams. She wants
it to meet the following conditions:

• There are at least two distinct tram lines.

• Each tram line serves exactly three stops (also counting the start and
terminus).

• For each two tram stops in the town there is exactly one tram line
that serves both stops.

What is the minimum number of stops that the mayor’s tram network can
have?

7.

A B

D C

E

A rectangle ABCD and a point E are given.
Line segments BE and BA have the same
length. Line segments CE and CB also have
the same length. Moreover, the area of rect-
angle ABCD is four times as large as the area
of triangle BCE. Side AD has length 10.
What is the length of diagonal AC?

8. We consider ways to fill a 5×5-board by writing a 1 or a 3 in each square.
Such a filling is called balanced if the following holds:

• If you take an arbitrary 3×3-square of the board and multiply all
the numbers that it contains, and after that you do the same for an
arbitrary 4×4-square, then the second result is always three times as
large as the first result.

1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

3

3 3

3 3

3 3

3 3In the figure on the right, you see a filling that is
not balanced. For example, when multiplying the
numbers in the indicated 4×4-square, the result
is nine times as large as the result obtained by
multiplying the numbers in the indicated 3 × 3-
square.

Give (on the answer form) a balanced filling of
the board containing a maximum number of 3-s.
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Solutions

Part 1

1. E) 90 5. C) a rectangle, but not a square

2. D) 2 6. D) 3

3. B) bottle 2 7. A) no, this is impossible.

4. B) Bep 8. D) 2 or 4

Part 2

1. 11
12 5. 199

2. 1008001 6. 7

3. 12,321,000,000 7. 20

4. 84 8. There are two possibilities:

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

3 3 3 3 3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3
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