
Solutions of Benelux Mathematical Olympiad 2010

Problem 1. A finite set of integers is called bad if its elements add up to 2010. A finite
set of integers is a Benelux-set if none of its subsets is bad. Determine the smallest integer
n such that the set {502, 503, 504, . . . , 2009} can be partitioned into n Benelux-sets.
(A partition of a set S into n subsets is a collection of n pairwise disjoint subsets of S, the
union of which equals S.)

Solution. As 502 + 1508 = 2010, the set S = {502, 503, . . . , 2009} is not a Benelux-set, so
n = 1 does not work. We will prove that n = 2 does work, i.e. that S can be partitioned
into 2 Benelux-sets.
Define the following subsets of S:

A = {502, 503, . . . , 670},
B = {671, 672, . . . , 1005},
C = {1006, 1007, . . . , 1339},
D = {1340, 1341, . . . , 1508},
E = {1509, 1510, . . . , 2009}.

We will show that A ∪ C ∪ E and B ∪D are both Benelux-sets.
Note that there does not exist a bad subset of S of one element, since that element would
have to be 2010. Also, there does not exist a bad subset of S of more than three elements,
since the sum of four or more elements would be at least 502+503+504+505 = 2014 > 2010.
So any possible bad subset of S contains two or three elements.
Consider a bad subset of two elements a and b. As a, b ≥ 502 and a + b = 2010, we have
a, b ≤ 2010 − 502 = 1508. Furthermore, exactly one of a and b is smaller than 1005 and
one is larger than 1005. So one of them, say a, is an element of A∪B, and the other is an
element of C ∪D. Suppose a ∈ A, then b ≥ 2010 − 670 = 1340, so b ∈ D. On the other
hand, suppose a ∈ B, then b ≤ 2010 − 671 = 1339, so b ∈ C. Hence {a, b} cannot be a
subset of A ∪ C ∪ E, nor of B ∪D.
Now consider a bad subset of three elements a, b and c. As a, b, c ≥ 502, a+ b+ c = 2010,
and the three elements are pairwise distinct, we have a, b, c ≤ 2010 − 502 − 503 = 1005.
So a, b, c ∈ A ∪ B. At least one of the elements, say a, is smaller than 2010

3
= 670, and at

least one of the elements, say b, is larger than 670. So a ∈ A and b ∈ B. We conclude that
{a, b, c} cannot be a subset of A ∪ C ∪ E, nor of B ∪D.
This proves that A ∪ C ∪ E and B ∪D are Benelux-sets, and therefore the smallest n for
which S can be partitioned into n Benelux-sets is n = 2. �

Remark. Observe that A∪C ∪E1 and B ∪D ∪E2 are also Benelux-sets, where {E1, E2}
is any partition of E.



Problem 2. Find all polynomials p(x) with real coefficients such that

p(a+ b− 2c) + p(b+ c− 2a) + p(c+ a− 2b) = 3p(a− b) + 3p(b− c) + 3p(c− a)

for all a, b, c ∈ R.

Solution 1. For a = b = c, we have 3p(0) = 9p(0), hence p(0) = 0. Now set b = c = 0,
then we have

p(a) + p(−2a) + p(a) = 3p(a) + 3p(−a)

for all a ∈ R. So we find a polynomial equation

p(−2x) = p(x) + 3p(−x). (1)

Note that the zero polynomial is a solution to this equation. Now suppose that p is not the
zero polynomial, and let n ≥ 0 be the degree of p. Let an 6= 0 be the coefficient of xn in
p(x). At the left-hand side of (1), the coefficient of xn is (−2)n ·an, while at the right-hand
side the coefficient of xn is an + 3 · (−1)n · an. Hence (−2)n = 1 + 3 · (−1)n. For n even,
we find 2n = 4, so n = 2, and for n odd, we find −2n = −2, so n = 1. As we already know
that p(0) = 0, we must have p(x) = a2x

2 +a1x, where a1 and a2 are real numbers (possibly
zero).
The polynomial p(x) = x is a solution to our problem, as

(a+ b− 2c) + (b+ c− 2a) + (c+ a− 2b) = 0 = 3(a− b) + 3(b− c) + 3(c− a)

for all a, b, c ∈ R. Also, p(x) = x2 is a solution, since

(a+ b− 2c)2 + (b+ c− 2a)2 + (c+ a− 2b)2 = 6(a2 + b2 + c2)− 6(ab+ bc+ ca)

= 3(a− b)2 + 3(b− c)2 + 3(c− a)2

for all a, b, c ∈ R.
Now note that if p(x) is a solution to our problem, then so is λp(x) for all λ ∈ R. Also,
if p(x) and q(x) are both solutions, then so is p(x) + q(x). We conclude that for all real
numbers a2 and a1 the polynomial a2x

2 + a1x is a solution. Since we have already shown
that there can be no other solutions, these are the only solutions. �

Solution 2. For a = b = c, we have 3p(0) = 9p(0), hence p(0) = 0. Now set b = c = 0,
then we have

p(a) + p(−2a) + p(a) = 3p(a) + 3p(−a)

for all a ∈ R. So we find a polynomial equation

p(−2x) = p(x) + 3p(−x). (2)



Define q(x) = p(x) + p(−x), then we find that

q(2x) = p(2x) + p(−2x) = (p(−x) + 3p(x)) + (p(x) + 3p(−x)) = 4q(x). (3)

Note that the zero polynomial is a solution to this equation. Now suppose that q is not
the zero polynomial, and let m ≥ 0 be the degree of q. Let bm 6= 0 be the coefficient
of xm in q(x). At the left-hand side of (3), the coefficient of xm is 2m · bm, while at the
right-hand side the coefficient of xm is 4bm. Hence m = 2. As q(x) = p(x) + p(−x), the
polynomial q(x) does not contain any nonzero terms with odd exponent of x. Since also
q(0) = 2p(0) = 0, we conclude that

q(x) = b2x
2,

where b2 is a real number (possibly zero).
From (2) we now deduce that p(2x) = p(−x) + 3p(x) = 2p(x) + q(x), so

p(2x)− 2p(x) = b2x
2. (4)

Suppose that that degree n of p is greater than 2. Let an 6= 0 be the coefficient of xn

in p(x). At the left-hand side of (4), the coefficient of xn is (2n − 2) · an 6= 0. But the
coefficient of xn at the right-hand side vanishes, yielding a contradiction. So the degree of
p is at most 2. As we already know that p(0) = 0, we must have p(x) = a2x

2 + a1x, where
a1 and a2 are real numbers (possibly zero).
We finally check that every polynomial of this form is indeed a solution (see solution 1). �



Problem 3. On a line l there are three different points A, B and P in that order. Let a be
the line through A perpendicular to l, and let b be the line through B perpendicular to l.
A line through P , not coinciding with l, intersects a in Q and b in R. The line through A
perpendicular to BQ intersects BQ in L and BR in T . The line through B perpendicular
to AR intersects AR in K and AQ in S.

(a) Prove that P , T , S are collinear.

(b) Prove that P , K, L are collinear.

Solution 1.

(a) Since P , R and Q are collinear, we have 4PAQ ∼ 4PBR, hence

|AQ|
|BR|

=
|AP |
|BP |

.

Conversely, P , T and S are collinear if it holds that

|AS|
|BT |

=
|AP |
|BP |

.

So it suffices to prove
|BT |
|BR|

=
|AS|
|AQ|

.

Since ∠ABT = 90◦ = ∠ALB and ∠TAB = ∠BAL, we have 4ABT ∼ 4ALB.
And since ∠ALB = 90◦ = ∠QAB and ∠LBA = ∠ABQ, we have 4ALB ∼ 4QAB.
Hence 4ABT ∼ 4QAB, so

|BT |
|BA|

=
|AB|
|AQ|

.

Similarly, we have 4ABR ∼ 4AKB ∼ 4SAB, so

|BR|
|BA|

=
|AB|
|AS|

.

Combining both results, we get

|BT |
|BR|

=
|BT |/|BA|
|BR|/|BA|

=
|AB|/|AQ|
|AB|/|AS|

=
|AS|
|AQ|

,

which had to be proved.



(b) Let the line PK intersect BR in B1 and AQ in A1 and let the line PL intersect BR
in B2 and AQ in A2. Consider the points A1, A and S on the line AQ, and the points
B1, B and T on the line BR. As AQ ‖ BR and the three lines A1B1, AB and ST
are concurrent (in P ), we have

A1A : AS = B1B : BT,

where all lengths are directed. Similarly, as A1B1, AR and SB are concurrent (in
K), we have

A1A : AS = B1R : RB.

This gives
BB1

BT
=
RB1

RB
=
RB +BB1

RB
= 1 +

BB1

RB
= 1− BB1

BR
,

so

BB1 =
1

1
BT

+ 1
BR

.

Similary, using the lines A2B2, AB and QR (concurrent in P ) and the lines A2B2,
AT and QB (concurrent in L), we find

B2B : BR = A2A : AQ = B2T : TB.

This gives
BB2

BR
=
TB2

TB
=
TB +BB2

TB
= 1 +

BB2

TB
= 1− BB2

BT
,

so

BB2 =
1

1
BR

+ 1
BT

.

We conclude that B1 = B2, which implies that P , K and L are collinear.

�

Solution 2.

(a) Define X as the intersection of AT and BS, and Y as the intersection of AR and BQ.
To prove that P , S and T are collinear, we will use Menelaos’ theorem in 4ABX,
so we have to prove

AP

PB

BS

SX

XT

TA
= −1.

Note that B is between P and A, X is between S and B, and X is between T and
A, so it suffices to prove that

|AP |
|PB|

|BS|
|SX|

|XT |
|TA|

= 1.



Because AQ and BR are parallel, we have 4AQP ∼ 4BRP , hence

|AP |
|BP |

=
|QA|
|RB|

. (5)

Also, since ∠ASB = ∠KBR and ∠BAS = 90◦ = ∠BKR, we have 4ASB ∼
4KBR, hence

|BS|
|RB|

=
|AS|
|KB|

, so |BS| = |AS|
|KB|

|RB|. (6)

Similarly, we have 4ATB ∼ 4QAL, hence

|TA|
|AQ|

=
|TB|
|AL|

, so |TA| = |TB|
|AL|

|AQ|. (7)

As ∠ASX = ∠ASB = 90◦ − ∠ABS = 90◦ − ∠ABK = ∠KAB = ∠Y AB, and
∠SAX = 90◦ − ∠XAB = 90◦ − ∠LAB = ∠ABL = ∠ABY , we have 4SXA ∼
4AY B, hence

|SX|
|AY |

=
|AS|
|BA|

, so |SX| = |AS|
|BA|

|AY |. (8)

Similarly, we have 4BXT ∼ 4AY B, hence

|XT |
|Y B|

=
|BT |
|AB|

, so |XT | = |BT |
|AB|

|Y B|. (9)

By combining (5) - (9), we find

|AP |
|PB|

|BS|
|SX|

|XT |
|TA|

=
|QA|
|RB|

· |AS|
|KB|

|RB| · |BA|
|AS||AY |

· |BT |
|AB|

|Y B| · |AL|
|TB||AQ|

=
|AL|
|KB|

|Y B|
|AY |

. (10)

Since ∠Y LA = 90◦ = ∠Y KB and ∠AY L = ∠BYK, we have 4AY L ∼ 4BYK,
hence

|AL|
|BK|

=
|AY |
|BY |

, so
|AL|
|BK|

|BY |
|AY |

= 1. (11)

By combining (10) and (11), we find

|AP |
|PB|

|BS|
|SX|

|XT |
|TA|

= 1,

as we wanted to prove.

(b) Again, we will use Menelaos’ theorem in 4ABX, so we have to prove

AP

PB

BK

KX

XL

LA
= −1.



Note that AP
PB

< 0, and BK
KX

< 0 if and only if XL
LA

< 0, so it suffices to prove that

|AP |
|PB|

|BK|
|KX|

|XL|
|LA|

= 1.

As ∠BXL = ∠AXK and ∠BLX = 90◦ = ∠AKX, we have 4BLX ∼ 4AKX,
hence

|XL|
|XK|

=
|BL|
|AK|

. (12)

Since ∠ALB = 90◦ = ∠QAB, we have 4ALB ∼ 4QAB, hence

|LA|
|AQ|

=
|LB|
|AB|

, so |LA| = |LB|
|AB|

|AQ|. (13)

Similarly, we have 4AKB ∼ 4ABR, hence

|BK|
|RB|

=
|AK|
|AB|

, so |BK| = |AK|
|AB|

|RB|. (14)

By combining (5) and (12) - (14), we find

|AP |
|PB|

|BK|
|KX|

|XL|
|LA|

=
|QA|
|RB|

· |BL|
|AK|

· |AB|
|LB||AQ|

· |AK|
|AB|

|RB| = 1,

which is what we wanted to prove.

�

Solution 3. As ∠AKB = ∠ALB = 90◦, the points K and L belong to the circle with
diameter AB. Since ∠QAB = ∠ABR = 90◦, the lines AQ and BR are tangents to this
circle.
Apply Pascal’s theorem to the points A, A, K, L, B and B, all on the same circle. This
yields that the intersection Q of the tangent in A and the line BL, the intersection R of
the tangent in B and the line AK, and the intersection of KL and AB are collinear. So
KL passes through the intersection of AB and QR, which is point P . Hence P , K and L
are collinear. This proves part b.
Now apply Pascal’s theorem to the points A, A, L, K, B and B. This yields that the
intersection S of the tangent in A and the line BK, the intersection T of the tangent in B
and the line AL, and the intersection P of KL and AB are collinear. This proves part a. �

Solution 4.



(a) W.l.o.g. we may assume that A = (0, 0) and B = (1, 0) and the line through P is in
the upper half plane, so l is the x-axis, a is the y-axis and b is the line x = 1. Take
P = (p, 0) (p > 1) and Q = (0, q) (q > 0). Since PQ is given by x

p
+ y

q
= 1, we find

R = (1, q(p−1)
p

).

Now AR is given by y = q(p−1)
p

x, hence BS, the line perpendicular to AR and passing

through B = (1, 0), is given by y = − p
q(p−1)

(x− 1). We find S = (0, p
q(p−1)

).

Moreover BQ is given by y = −q(x − 1), hence AT , the line perpendicular to BQ
and passing through A = (0, 0), is given by y = 1

q
x. We find T = (1, 1

q
). Since

|BT |
|BP | = 1/q

p−1
=

p
q(p−1)

p
= |AS|
|AP | , we conclude that P , T and S are collinear.

(b) Point K is the intersection of AR and BS. Solving for x yields

q(p− 1)

p
x = − p

q(p− 1)
(x− 1)(

q(p− 1)

p
+

p

q(p− 1)

)
x =

p

q(p− 1)

x =

p
q(p−1)

q(p−1)
p

+ p
q(p−1)

so

K =

(
p

q(p−1)

q(p−1)
p

+ p
q(p−1)

,
1

q(p−1)
p

+ p
q(p−1)

)
.

Point L is the point of intersection of AT and BQ. Solving for x yields

1

q
x = −q(x− 1)(

1

q
+ q

)
x = q

x =
q

1
q

+ q

so

L =

(
q

1
q

+ q
,

1
1
q

+ q

)
.

Let K0 and L0 be the projections of K and L on the x-axis. We have to show that
the following fractions are equal:

|K0K|
|K0P |

=

1
q(p−1)

p
+ p

q(p−1)

p−
p

q(p−1)
q(p−1)

p
+ p

q(p−1)

and
|L0L|
|L0P |

=

1
1
q
+q

p− q
1
q
+q



Working out cross products twice, this comes down to

1
q(p−1)

p
+ p

q(p−1)

·

(
p− q

1
q

+ q

)
?
=

1
1
q

+ q
·

(
p−

p
q(p−1)

q(p−1)
p

+ p
q(p−1)

)
(

1

q
+ q

)
·

(
p− q

1
q

+ q

)
?
=

(
q(p− 1)

p
+

p

q(p− 1)

)
·

(
p−

p
q(p−1)

q(p−1)
p

+ p
q(p−1)

)
p

q
+ pq − q ?

= q(p− 1) +
p2

q(p− 1)
− p

q(p− 1)

p

q
+ pq − q ?

= q(p− 1) +
p(p− 1)

q(p− 1)
,

which is clearly true. �



Problem 4. Find all quadruples (a, b, p, n) of positive integers, such that p is a prime and

a3 + b3 = pn.

Solution 1. Let (a, b, p, n) be a solution. Note that we can write the given equation as

(a+ b)(a2 − ab+ b2) = pn.

As a and b are positive integers, we have a+b ≥ 2, so p | a+b. Furthermore, a2−ab+b2 =
(a− b)2 + ab, so either a = b = 1 or a2 − ab + b2 ≥ 2. Assume that the latter is the case.
Then p is a divisor of both a+b and a2−ab+b2, hence also of (a+b)2−(a2−ab+b2) = 3ab.
This means that p either is equal to 3 or is a divisor of ab. Since p is a divisor of a+ b, we
have p | a ⇔ p | b, hence either p = 3, or p | a and p | b. If p | a and p | b, then we can
write a = pa′, b = pb′ with a′ and b′ positive integers, and we have (a′)3 + (b′)3 = pn−3, so
(a′, b′, p, n− 3) then is another solution (note that (a′)3 + (b′)3 is a positive integer greater
than 1, so n− 3 is positive).
Now assume that (a0, b0, p0, n0) is a solution such that p - a. From the reasoning above
it follows that either a0 = b0 = 1, or p0 = 3. After all, if we do not have a0 = b0 = 1
and we have p0 6= 3, then p | a. Also, given an arbitrary solution (a, b, p, n), we can divide
everything by p repeatedly until there are no factors p left in a.
Suppose a0 = b0 = 1. Then the solution is (1, 1, 2, 1).
Suppose p0 = 3. Assume that 32 | (a2

0 − a0b0 + b20). As 32 | (a0 + b0)
2, we then have

32 | (a0 + b0)
2 − (a2

0 − a0b0 + b20) = 3a0b0, so 3 | a0b0. But 3 - a0 by assumption, and
3 | a0 + b0, so 3 - b0, which contradicts 3 | a0b0. We conclude that 32 - (a2

0 − a0b0 + b20). As
both a0 + b0 and a2

0 − a0b0 + b20 must be powers of 3, we have a2
0 − a0b0 + b20 = 3. Hence

(a0 − b0)2 + a0b0 = 3. We must have (a0 − b0)2 = 0 or (a0 − b0)2 = 1. The former does not
give a solution; the latter gives a0 = 2 and b0 = 1 or a0 = 1 and b0 = 2.
So all solutions with p - a are (1, 1, 2, 1), (2, 1, 3, 2) and (1, 2, 3, 2). From the above it follows
that all other solutions are of the form (pk

0a0, p
k
0b0, p0, n0 + 3k), where (a0, b0, p0, n0) is

one of these three solutions. Hence we find three families of solutions:

• (2k, 2k, 2, 3k + 1) with k ∈ Z≥0,

• (2 · 3k, 3k, 3, 3k + 2) with k ∈ Z≥0,

• (3k, 2 · 3k, 3, 3k + 2) with k ∈ Z≥0.

It is easy to check that all these quadruples are indeed solutions. �

Solution 2. Let (a, b, p, n) be a solution. Note that we can write the given equation as

(a+ b)(a2 − ab+ b2) = pn.



As a and b are positive integers, we have a + b ≥ 2 and a2 − ab + b2 = (a − b)2 + ab ≥ 1.
So both factors are positive and therefore must be powers of p. Let k be an integer with
1 ≤ k ≤ n such that a+ b = pk. Then a2 − ab+ b2 = pn−k. If we substitute b = pk − a, we
find

pn−k = (a+ b)2 − 3ab = p2k − 3a(pk − a).

We can rewrite this as:
3a2 − 3pka+ p2k − pn−k = 0,

from which we see that a is a solution of the following quadratic equation in x:

3x2 − 3pkx+ p2k − pn−k = 0. (15)

The discriminant of (15) is

D = (−3pk)2 − 4 · 3 · (p2k − pn−k) = 3 · (4pn−k − p2k) = 3pn−k · (4− p3k−n).

As pn−k = (a + b)2 − 3ab < (a + b)2 = p2k, we have n− k < 2k, so 3k − n > 0. Since a is
a solution of (15), the discriminant must be nonnegative. Hence 4 − p3k−n ≥ 0. If p = 2,
this implies 3k − n = 1 or 3k − n = 2; if p = 3, this implies 3k − n = 1; and if p > 3, then
p ≥ 5 so 4 ≥ p3k−n can never be true.
Suppose p = 2 and 3k − n = 1. Then D = 3 · 22k−1 · (4− 2) = 3 · 22k. But this is a not a
square, so the solutions of (15) will not be integers, which yields a contradiction.
Suppose p = 2 and 3k−n = 2. Then D = 3 ·22k−2 · (4−4) = 0, so the only solution of (15)

is x = 3·2k

2·3 = 2k−1. Therefore a = 2k−1 and b = 2k − a = 2k−1, and this gives a solution for
all k ≥ 1, namely (2k−1, 2k−1, 2, 3k − 2).
Suppose p = 3 and 3k − n = 1. Then D = 3 · 32k−1 · (4− 3) = 32k, so the solutions of (15)

are x = 3k+1±3k

2·3 = 1
2
(3k ± 3k−1). Therefore a = 2 · 3k−1 or a = 3k−1. For all k ≥ 1 we find

the solutions (2 · 3k−1, 3k−1, 3, 3k − 1) and (3k−1, 2 · 3k−1, 3, 3k − 1).
We conclude that there are three families of solutions:

• (2k−1, 2k−1, 2, 3k − 2) with k ∈ Z≥1,

• (2 · 3k−1, 3k−1, 3, 3k − 1) with k ∈ Z≥1,

• (3k−1, 2 · 3k−1, 3, 3k − 1) with k ∈ Z≥1.

It is easy to check that all these quadruples are indeed solutions. �


