1. Let a, b, c, and d be four distinct integers. Prove that $(a - b)(a - c)(a - d)(b - c)(b - d)(c - d)$ is divisible by 12.

2. We number the columns of an $n \times n$-board from 1 to n. In each cell, we place a number. This is done in such a way that each row precisely contains the numbers 1 to n (in some order), and also each column contains the numbers 1 to n (in some order). Next, each cell that contains a number greater than the cell’s column number, is coloured blue. In the figure below you can see an example for the case $n = 3$.

```
1 2 3
3 1 2
1 2 3
2 3 1
```

(a) Suppose that $n = 5$. Can the numbers be placed in such a way that each row contains the same number of blue cells?

(b) Suppose that $n = 10$. Can the numbers be placed in such a way that each row contains the same number of blue cells?

3. Determine all pairs (p, m) consisting of a prime number p and a positive integer m, for which

$$p^3 + m(p + 2) = m^2 + p + 1$$

holds.
4. We are given an acute triangle ABC and points D on BC and E on AC such that AD is perpendicular to BC and BE is perpendicular to AC. The intersection of AD and BE is called H. A line through H intersects line segment BC in P, and intersects line segment AC in Q. Furthermore, K is a point on BE such that PK is perpendicular to BE, and L is a point on AD such that QL is perpendicular to AD.

Prove that DK and EL are parallel.

5. The numbers 1 to 12 are arranged in a sequence. The number of ways this can be done equals $12 \times 11 \times 10 \times \cdots \times 1$. We impose the condition that in the sequence there should be exactly one number that is smaller than the number directly preceding it. How many of the $12 \times 11 \times 10 \times \cdots \times 1$ sequences meet this demand?