Final round
 Dutch Mathematical Olympiad

Friday 16 September 2011
Solutions

1. Since a and b play the same role in the equation $a!+b!=2^{n}$, we will assume for simplicity that $a \leqslant b$. The solutions for which $a>b$ are found by interchanging a and b. We will consider the possible values of a.

Case $a \geqslant 3$: Since $3 \leqslant a \leqslant b$, both a ! and b ! are divisible by 3 . Hence $a!+b$! is divisible by 3 as well. Because 2^{n} is not divisible by 3 for any value of n, we find no solutions in this case.
Case $a=1$: The number b must satisfy $b!=2^{n}-1$. This implies that $b!$ is odd, because 2^{n} is even (recall that $n \geqslant 1$). Since b ! is divisible by 2 for all $b \geqslant 2$, we must have $b=1$. We find that $1!=2^{n}-1$, which implies that $n=1$. The single solution in the case is therefore $(a, b, n)=(1,1,1)$.
Case $a=2$: There are no solutions for $b \geqslant 4$. Indeed, since b ! would then be divisible by $4,2^{n}=b!+2$ would not be divisible by 4 , which implies that $2^{n}=2$. However, this contradicts the fact that $2^{n}=b!+2 \geqslant 24+2$.
For $b=2$, we find $2^{n}=2+2=4$. Hence $n=2$ and $(a, b, n)=(2,2,2)$ is the only solution. For $b=3$, we find $2^{n}=2+6=8$. Hence $n=3$ and $(a, b, n)=(2,3,3)$ is the only solution. By interchanging a and b, we obtain the additional solution $(a, b, n)=(3,2,3)$.

In all, there are four solutions: $(1,1,1),(2,2,2),(2,3,3)$ and $(3,2,3)$.
2. Denote by K the midpoint of $P Q$. Then K is also the midpoint of $B C$, and $A K$ is a median of triangle $A B C$. We denote by L the intersection of $A K$ and $S T$.

Triangles $A S T$ and $A C B$ are similar (sas), because $\angle C A B=\angle S A T$ and $\frac{|C A|}{|S A|}=3=\frac{|B A|}{|T A|}$. This implies that $S T$ and $C B$ are parallel lines (equal corresponding angles).
Triangles $A S L$ and $A C K$ are similar (aa), because $\angle S A L=\angle C A K$ and
 $\angle L S A=\angle T S A=\angle B C A=\angle K C A$. Hence $\frac{|C K|}{|S L|}=\frac{|C A|}{|S A|}=3$. This implies that L is the midpoint of $S T$, because $\frac{|S L|}{|S T|}=\frac{3 \cdot|S L|}{3 \cdot|S T|}=\frac{|C K|}{|C B|}=\frac{1}{2}$.
Consider the center M of the circle through P, Q, R, S, T and U. It is incident to both the perpendicular bisector of $P Q$, and that of $S T$. However, since $P Q$ and $S T$ are parallel, the two perpendicular bisectors must coincide: they are the same line. This line is incident to L and K, and is therefore equal to line $A K$, which shows that $A K \perp B C$.
It follows that $|A C|=|A B|$, because $A K$ is the perpendicular bisector of $B C$.
In a similar fashion, one can show that $|A C|=|B C|$, concluding the proof that triangle $A B C$ is equilateral.
3. In all, 15 matches are played. In each match, the two teams together earn 2 or 3 points. The sum of the final scores is therefore an integer between $15 \cdot 2=30$ (all matches end in a draw) and $15 \cdot 3=45$ (no match is a draw).
On the other hand, the sum of the six scores equals $a+(a+1)+\cdots+(a+5)=15+6 a$. Hence $30 \leqslant 15+6 a \leqslant 45$, which shows that $3 \leqslant a \leqslant 5$. We will prove that $a=4$ is the only possibility.
First consider the case $a=5$. The sum of the scores equals $15+30=45$, so no match ends in a draw. Because in every match the teams earn either 0 or 3 points, every team's score is divisible by 3 . Therefore, the scores cannot be six consecutive numbers.

Next, consider the case $a=3$. The scores sum up to $3+4+5+6+7+8=33$. The two teams scoring 6 and 7 points must both have won at least one out of the five matches they played.

The team scoring 8 points must have won at least two matches, because $3+1+1+1+1=7<8$. Hence at least 4 matches did not end in a draw, which implies that the sum of the scores is at least $4 \cdot 3+11 \cdot 2=34$. But we have already see that this sum equals 33 , a contradiction.

Finally, we will show that $a=4$ is possible. The table depicts a possible outcome in which teams A to F have scores 4 to 9 . The rightmost column shows the total scores of the six teams.

	A	B	C	D	E	F	
A	-	3	1	0	0	0	4
B	0	-	1	0	3	1	5
C	1	1	-	3	0	1	6
D	3	3	0	-	1	0	7
E	3	0	3	1	-	1	8
F	3	1	1	3	1	-	9

4. For convenience, write $y=\sqrt{a}$ and $z=\sqrt{b}$. The equations transform to

$$
y^{3}+z^{3}=134 \quad \text { and } \quad y^{2} z+y z^{2}=126
$$

Combining these two equations in a handy way, we find

$$
(y+z)^{3}=\left(y^{3}+z^{3}\right)+3\left(y^{2} z+y z^{2}\right)=134+3 \cdot 126=512=8^{3}
$$

This immediately implies that $y+z=8$.
Rewrite the first equation as follows: $(y+z) y z=y^{2} z+y z^{2}=126$. Since $y+z=8$, we see that $y z=\frac{126}{8}=\frac{63}{4}$.
From $y+z=8$ and $y z=\frac{63}{4}$, we can determine y and z by solving a quadratic equation: y and z are precisely the roots of the equation $x^{2}-8 x+\frac{63}{4}=0$. The two solutions are $\frac{8 \pm \sqrt{64-4 \cdot \frac{63}{4}}}{2}$, that is $\frac{9}{2}$ and $\frac{7}{2}$.
Since $a>b$, also $y>z$ holds. Hence $y=\frac{9}{2}$ and $z=\frac{7}{2}$. We therefore find that $(a, b)=\left(\frac{81}{4}, \frac{49}{4}\right)$. Because $(a, b)=\left(\frac{81}{4}, \frac{49}{4}\right)$ satisfies the given equations, as required, we conclude that this is the (only) solution.
5. We are give that 1 is white. Hence 0 is black, because otherwise $1=1-0$ and $1=1+0$ would have different colours. The number 2 is white, because $0=1-1$ (black) and $2=1+1$ have different colours.
By induction on k, we show that the following claim holds for every $k \geqslant 0$:

$$
3 k \text { is black, } 3 k+1 \text { and } 3 k+2 \text { are white. }
$$

We have just shown the base case $k=0$. Assume that the claim holds true for $k=\ell$.
Since 1 is white, and $3 \ell+2$ is white by the induction hypothesis, the numbers $(3 \ell+2)-1=3 \ell+1$ and $(3 \ell+2)+1=3(\ell+1)$ have different colours. As $3 \ell+1$ is white by the induction hypothesis, $3(\ell+1)$ must be black.
Since 2 and $3 \ell+2$ are both white, the numbers $(3 \ell+2)+2=3(\ell+1)+1$ and $(3 \ell+2)-2=3 \ell$ must have different colours. As 3ℓ is black by the induction hypothesis, $3(\ell+1)+1$ must be white.
Since $3(\ell+1)+1$ and 1 are both white, the numbers $3(\ell+1)+1+1=3(\ell+1)+2$ and $3(\ell+1)$ have different colours. We already know that $3(\ell+1)$ is black, so $3(\ell+1)+2$ must be white. This proves the claim for $k=\ell+1$.

Because $2011=3 \cdot 670+1$, this shows that 2011 is white.

