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Introduction

The selection process for IMO 2014 started with the first round in January
2013, held at the participating schools. The paper consisted of eight mul-
tiple choice questions and four open questions, to be solved within 2 hours.
In total 32% more students than in 2012 participated in this first round:
to be precise: 7424 students of 283 secondary schools.

Those 800 students from grade 5 (4, ≤ 3) that scored 24 (21, 18) points or
more on the first round (out of a maximum of 36 points) were invited to
the second round, which was held in March at twelve universities in the
country. This round contained five open questions, and two problems for
which the students had to give extensive solutions and proofs. The contest
lasted 2.5 hours.

Those students from grade 5 (4, ≤ 3) that scored 26 (24, 21) points or
more on the second round (out of a maximum of 40 points) were invited to
the final round. Also some outstanding participants in the Kangaroo math
contest or the Pythagoras Olympiad were invited. In total 149 students
were invited. They also received an invitation to some training sessions at
the universities, in order to prepare them for their participation in the final
round.

Out of those 149, in total 143 participated in the final round on 13 Septem-
ber 2013 at Eindhoven University of Technology. This final round contained
five problems for which the students had to give extensive solutions and
proofs. They were allowed 3 hours for this round. After the prizes had been
awarded in the beginning of November, the Dutch Mathematical Olympiad
concluded its 52nd edition 2013.

The 34 most outstanding candidates of the Dutch Mathematical Olympiad
2013 were invited to an intensive seven-month training programme. The
students met twice for a three-day training camp, three times for a single
day, and finally for a six-day training camp in the beginning of June. Also,
they worked on weekly problem sets under supervision of a personal trainer.
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Among the participants of the training programme, there were some extra
girls, as this year we participated for the third time in the European Girls’
Mathematical Olympiad (EGMO). In total there were eight girls competing
to be in the EGMO team. The team of four girls was selected by a selection
test, held on 21 March 2014. They attended the EGMO in Antalya, Turkey
from 10 until 16 April, and the team returned with a gold and a bronze
medal. For more information about the EGMO (including the 2014 paper),
see www.egmo.org.

The same selection test was used to determine the ten students particip-
ating in the Benelux Mathematical Olympiad (BxMO), held in Brugge,
Belgium, from 2 until 4 May. The Dutch team managed to come first in
the country ranking, and received two bronze medals, two silver medals
and two gold medals. For more information about the BxMO (including
the 2014 paper), see www.bxmo.org.

In June the team for the International Mathematical Olympiad 2014 was
selected by two team selection tests on 6 and 7 June 2014. A seventh,
young, promising student was selected to accompany the team to the IMO
as an observer C. The team had a training camp in Cape Town, from 28
June until 6 July.

For younger students the Junior Mathematical Olympiad was held in Oc-
tober 2013 at the VU University Amsterdam. The students invited to
participate in this event were the 70 best students of grade 1, grade 2 and
grade 3 of the popular Kangaroo math contest. The competition consisted
of two one-hour parts, one with eight multiple choice questions and one with
eight open questions. The goal of this Junior Mathematical Olympiad is
to scout talent and to stimulate them to participate in the first round of
the Dutch Mathematical Olympiad.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.
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Dutch delegation

The Dutch team for IMO 2014 in South Africa consists of

� Tysger Boelens (18 years old)

– bronze medal at BxMO 2013, gold medal at BxMO 2014

� Peter Gerlagh (17 years old)

– bronze medal at BxMO 2011, honourable mention at BxMO
2012, gold medal at BxMO 2013

– observer C at IMO 2012, bronze medal at IMO 2013

� Matthew Maat (14 years old)

– bronze medal at BxMO 2014

� Michelle Sweering (17 years old)

– bronze medal at EGMO 2012, silver medal at EGMO 2013, gold
medal at EGMO 2014

– honourable mention at IMO 2012, bronze medal at IMO 2013

� Bas Verseveldt (17 years old)

– silver medal at BxMO 2012, bronze medal at BxMO 2013, gold
medal at BxMO 2014

– observer C at IMO 2013

� Jeroen Winkel (17 years old)

– bronze medal at BxMO 2011, silver medal at BxMO 2012
– observer C at IMO 2011, bronze medal at IMO 2012, silver medal

at IMO 2013

We bring as observer C the promising young student

� Bob Zwetsloot (16 years old)

– bronze medal at BxMO 2014

The team is coached by

� Quintijn Puite (team leader), Eindhoven University of Technology
� Birgit van Dalen (deputy leader), Leiden University
� Julian Lyczak (observer B), Utrecht University
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First Round, January 2013

Problems

A-problems

A1. A traffic light is alternately green and red. The periods green and red
are equally long and always of the same length: either 1, 2, or 3 minutes.
There are four combinations for the colour of the light at 12:08 pm and at
12:09 pm: red–red, red–green, green–red, and green–green.
How many of these four combinations are possible, given that the light is
red at 12:05 pm and also red at 12:12 pm?

A) 1 B) 2 C) 3
D) 4 E) The light cannot be red at both times.

A2.

A

D C

B

The rectangle ABCD is divided into five equal rect-
angles. The perimeter of each of these small rect-
angles is 20.
What is the area of rectangle ABCD?

A) 72 B) 112 C) 120 D) 140 E) 150

A3. The numbers a, b, c, d and e satisfy:

a + b + 1 = b + c − 2 = c + d + 3 = d + e − 4 = e + a + 5.

Which is the largest of these five numbers?

A) a B) b C) c D) d E) e

A4. Nine light bulbs are put in a square formation. Each
bulb can be either on or off. We can make a move
by pressing a bulb. Then, the pressed bulb and the
bulbs in the same row or column change their state
from on to off or vice versa. Initially, all light bulbs
are on.
What is the minimum number of moves needed to
turn off all the light bulbs?

A) 3 B) 4 C) 5 D) 9 E) This is impossible.
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A5. Out of a shipment of boxes, one fourth is empty. We open one fourth of
all boxes and notice that one fifth of them is non-empty.
Which part of the unopened boxes is empty?

A) 4
15

B) 1
4

C) 1
15

D) 1
16

E) 1
20

A6. A regular hexagon and an equilateral triangle have the same perimeter.
What is the ratio area hexagon : area triangle?

A) 2 ∶ 3 B) 1 ∶ 1 C) 4 ∶ 3 D) 3 ∶ 2 E) 2 ∶ 1

A7. What are the last four digits of 52013?

A) 0625 B) 2525 C) 3125 D) 5625 E) 8125

A8. Twenty students did a test. No two students answered the same number
of questions correctly. Each question was answered correctly by at most
three students.
What is the smallest number of questions that the test could have had?

A) 63 B) 64 C) 67 D) 70 E) 71
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B-problems
The answer to each B-problem is a number.

B1. What is the smallest positive integer consisting of the digits 2, 4 and 8,
such that each digit occurs at least twice and the number is not divisible
by 4?

B2.

A

D

B

C

4

5

4

a

b

A rectangle ABCD has sides of length a and b, where
a < b. The lines through A and C perpendicular
to the diagonal BD divide the diagonal into three
segments of lengths 4, 5, and 4.
Calculate b

a
.

B3. A bus calls at three stops. The middle bus stop is equally far from the
first stop as from the last stop. Fred, standing at the middle bus stop, has
to wait for 15 minutes for the bus to arrive. If he cycles to the first stop,
he will arrive there at the same time as the bus. If instead he runs to the
last stop, he will also arrive there at the same moment as the bus.
How long would it take Fred to cycle to the last stop and then run back
to the middle stop?

B4. We write down the numbers from 1 to 30 000 one after the other to form
a long string of digits:

123456789101112 . . .30000.

How many times does 2013 occur in this sequence?
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Solutions

A-problems

A1. B) 2 It is given that the light is red at 12:05 pm. The colours at

times 12:05 pm to 12:12 pm are now fixed for a traffic light of period 1:
they are alternately red and green. When the period is 2, there are two
possibilities and for period 3 there are three possibilities:

period 12:05 12:06 12:07 12:08 12:09 12:10 12:11 12:12
1 min red green red green red green red green
2 min red red green green red red green green
2 min red green green red red green green red
3 min red red red green green green red red
3 min red red green green green red red red
3 min red green green green red red red green

In three of the six cases, the light is red at 12:12 pm, as required. This
gives us two colour combinations for the light at 12:08 pm and at 12:09
pm: red–red and green-green.

A2. C) 120 Twice the length of a small rectangle equals three times its

width. Therefore, the ratio between length and width equals 3 ∶ 2. As the
perimeter is 20, the length must be 6 and the width must be 4. We see
that the area of each small rectangle equals 6 × 4 = 24, hence the area of
rectangle ABCD is 5 × 24 = 120.

A3. B) b Comparing sums of pairs of numbers, we find:

e + a < c + d < a + b < b + c < d + e.

Every sum of four of the numbers can be obtained by adding two of the
pairs. For example, a+b+c+e is equal to (e+a)+(b+c). Of all four-tuples,
a, c, d, e has the smallest sum, because a + c + d + e = (e + a) + (c + d) is the
sum of the two smallest pairs. The remaining number b must be the largest
among the five numbers. Indeed, the largest number is the one for which
the remaining four numbers have the smallest sum.

A4. A) 3 The order in which the moves are made is irrelevant for the

final result. By pressing the three bulbs in the top row, all bulbs will change

7



from being on to being off. Indeed, the bulbs in the top row change their
state three times, and the other bulbs change their state exactly once.

It is not possible to turn off all light bulbs by pressing two or fewer bulbs,
because some bulb will not be in the same row or column as the chosen
bulbs, and hence remain on.

A5. C) 1
15

Without changing the problem, we may assume that there

are 20 boxes. Hence, a total of 5 boxes is empty. Out of the 5 boxes
that are opened, one fifth turns out to be non-empty, exactly 1 box. As
4 of the opened boxes are empty, there is exactly 1 empty box among the
remaining 15 unopened boxes.

A6. D) 3 ∶ 2 We divide the hexagon into 6 equal equilat-

eral triangles and divide the triangle into 4 equal equilateral
triangles, see the figure. Since the hexagon and the triangle
have the same perimeter, the sides of the triangle are twice
as long as the hexagon’s sides. Therefore, the triangles in
both divisions have the same size. It follows that the ra-
tio between the area of the hexagon and the area of the
triangle equals 6 ∶ 4, or: 3 ∶ 2.

A7. C) 3125 We consider the last four digits of the powers of 5:

51 = 0005 55 = 3125
52 = 0025 56 = 1 5625
53 = 0125 57 = 7 8125
54 = 0625 58 = 39 0625

The last four digits of a power of 5 are already determined by the last
four digits of the previous power of 5. For example: the last four digits of
5 × 390625 and 5 × 0625 are both 3125. Because the last four digits of 54

and 58 are the same, the last four digits of powers of 5 will repeat every
four steps. The last four digits of 52013 will be the same as those of 52009

and those of 52005, continuing all the way down to the last four digits of
55 = 3125. We conclude that 3125 are the last four digits of 52013.

A8. B) 64 Since every student answered correctly a different number of

questions, at least 0 + 1 + 2 + ⋯ + 19 = 190 correct answers were given in
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total. Because every question was answered correctly at most three times,
there must be at least 190

3
= 63 1

3
questions. That is, there were at least 64

questions.

B-problems

B2.

A

D

B

C

F

a

b

3
2

Triangles ADF , BDA en BAF are

similar (AA). Hence

b

a
= ∣BA∣∣DA∣ =

∣AF ∣
∣DF ∣ =

∣BF ∣
∣AF ∣ .

Therefore

( b
a
)
2

= ∣AF ∣∣DF ∣ ⋅
∣BF ∣
∣AF ∣ =

∣BF ∣
∣DF ∣ =

9

4
.

We conclude that b
a
= 3

2
.

B3. 30 minutes The time needed by Fred to bike from the middle stop to the

last stop and run back to the middle stop, is equal to the time he needs to
bike from the middle stop to the first stop plus the time he needs to run
from the middle stop to the last stop. This is because the distance to both
stops is the same.

It is given that this amount of time equals the time the bus needs to get to
the first stop plus the time it needs to get to the last stop. This is exactly
twice the time the bus needs to get to the middle stop: 2×15 = 30 minutes.

B4. 25 times The combination of digits “2013” occurs 13 times as part

of the following numbers: 2013, 12013, 22013, and 20130 to 20139. In
addition, “2013” also occurs as the end of one number followed by the
beginning of the next number. The different possibilities are:

2∣013 does not occur, since no number starts with digit ‘0’.

20∣13 occurs 11 times: 1320∣1321 and 13020∣13021 to 13920∣13921.

201∣3 occurs only once: 3201∣3202, because no numbers larger than 30 000
were written down.

It is easy to verify that “2013” does not occur as a combination of three
consecutive numbers. Therefore, “2013” occurs a total of 13 + 11 + 1 = 25
times in the sequence of digits.
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Second Round, March 2013

Problems

B-problems
The answer to each B-problem is a number.

B1. A number of students took a test for which the maximum possible score
was 100 points. Everyone had a score of at least 60 points. Exactly five
students scored the maximum of 100 points. The average score among the
students was 76 points.
What is the minimum number of students that could have taken the test?

B2.

A B

CD

In the figure, a square ABCD of side length 4 is
given. Inside the square, two semicircles with dia-
meters AB and BC are drawn.
Determine the combined area of the two grey shapes.

B3.
12

11

10

9

8

7
6

5

4

2

1

3

12
11

10

9

8

7
6

5

4

2

1

3

Consider two clocks, like the ones in the figure
on the right, whose hands move at a constant
speed. Both clocks are defective; the hands
of the first clock turn at a pace that is 1%
faster than it should be, while the hands of
the second clock turn at a pace that is 5% too
fast. At a certain moment, both clocks show a time of exactly 2 o’clock.
Some time passes until both clocks again show exactly the same time.
At that moment, what time do the clocks show?

B4. 1
2 32 A B

C 2 8 2

4 1 D E

F G H 16

The number square on the right is filled with positive
numbers. The product of the numbers in each row,
in each column, and in each of the two diagonals is
always the same.
What number is H?
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B5.
11

9

5

16

A regular hexagon is divided into seven parts by lines
parallel to its sides, see the figure. Four of those
pieces are equilateral triangles, whose side lengths
are indicated in the figure.
What is the side length of the regular hexagon?

C-problems
For the C-problems not only the answer is important; you also

have to describe the way you solved the problem.

C1. We say a positive n-digit number (n ≥ 3 and n ≤ 9) is above average if it
has the following two properties:

� the number contains each digit from 1 to n exactly once;

� for each digit, except the first two, the following holds: twice the digit
is at least the sum of the two preceding digits.

For example, 31254 is above average because it consists of the digits 1 to
5 (each exactly once) and also

2 ⋅ 2 ≥ 3 + 1, 2 ⋅ 5 ≥ 1 + 2, and 2 ⋅ 4 ≥ 2 + 5.

(a) Give a 4-digit number that is above average and has ‘4’ as its first
digit.

(b) Show that no 4-digit number that is above average has ‘4’ as its second
digit.

(c) For 7-digit numbers that are above average, determine all possible
positions of the digit ‘7’.

C2. We will call a triple (x, y, z) good if x, y, and z are positive integers such
that y ≥ 2 and the equation x2 − 3y2 = z2 − 3 holds.
An example of a good triple is (19,6,16), because 6 ≥ 2 and 192 − 3 ⋅ 62 =
162 − 3.

(a) Show that for every odd number x ≥ 5 there are at least two good
triples (x, y, z).

(b) Find a good triple (x, y, z) with x being even.

11



Solutions

B-problems

B1. 13 A solution with thirteen students is possible. If five students

scored 100 points and the remaining eights students scored 61 points, the
average score equals 5⋅100+8⋅61

13
= 988

13
= 76 points, as required.

It is not possible that the number of students taking the test was twelve
or less. Indeed, suppose that n ≤ 12 students took the test. Five of them
scored 100 points and the remaining n−5 students scored at least 60 points.
Their total score would be at least 500 + (n − 5) ⋅ 60 = 60n + 200. Their
average score would then be at least

60n + 200

n
= 60 + 200

n
≥ 60 + 200

12
= 76 2

3
,

since n ≤ 12. This, however, contradicts the fact that their average score
was 76.

B2.

A B

CD

p

q
r s

8 Note that both circles go through the

middle of the square. Therefore, the four circle seg-
ments indicated by p, q, r, and s all belong to one
fourth of a circle with radius 2, hence the four seg-
ments have equal areas. Therefore, the combined
area of the grey shapes equals the area of triangle
ACD which is 1

2
⋅ 4 ⋅ 4 = 8.

B3. 5 o’clock In 12 hours, the amounts by which the hour hands of the

first and the second clock are ahead increase by 1
100

and 5
100

of a turn
respectively. Therefore, in 12 hours, the second clock increases its lead
compared to the first clock by 5−1

100
= 1

25
of a full turn. Hence after 25 ⋅ 12

hours, the hour hand of the second clock has made exactly one extra full
turn compared to that of the first clock. This is the first time the two
clocks again display the same time.

During those 25⋅12 hours, the hour hand of the first clock has made exactly
101
100

⋅ 25 = 25 1
4

full turns. Both clocks will then display a time of 2 + 3 = 5
o’clock.
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B4. 1
2 32 8 1

4 2 8 2

4 1 8 4

16 2 1
4 16

1
4

The product of the eight numbers in

the second and fourth row equals the product of the
eights numbers in the first and second column. Writ-
ing this out, we get:

C ⋅ 2 ⋅ 8 ⋅ 2 ⋅ F ⋅G ⋅H ⋅ 16 = 1
2
⋅C ⋅ 4 ⋅ F ⋅ 32 ⋅ 2 ⋅ 1 ⋅G.

Since C, F , and G are nonzero, we may divide both sides of the equation
by C, F , and G. The resulting equation is 512 ⋅H = 128, which implies
that H = 1

4
. The figure shows one solution.

B5.

11

9

5

16

A

B

C

D

E

F

19 By dividing the regular hexagon into

six equilateral triangles, we deduce that the length of
the long diagonal AC of the hexagon equals twice the
side length of the hexagon. We will compute three
times the side length, namely ∣AB∣ + ∣BC ∣ + ∣CD∣.
Observe that AB is a side of a parallelogram with
the parallel side having length 11+16 = 27. Thus we
have ∣AB∣ = 27.

As triangle BCE is equilateral, we have ∣BC ∣ = ∣EB∣.
As BCDF ia a parallelogram, we have ∣CD∣ = ∣BF ∣.
From the figure we see that ∣EB∣ + ∣BF ∣ = ∣EF ∣ =
5 + 16 + 9 = 30.

If we combine these facts, we find that three times
the side length of the regular hexagon equals

∣AB∣ + ∣BC ∣ + ∣CD∣ = 27 + ∣EB∣ + ∣BF ∣ = 27 + 30 = 57.

The side length therefore equals 57
3
= 19.
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C-problems

C1. (a) The number 4132 starts with a ‘4’ and is above average because 2 ⋅3 ≥
4 + 1 and 2 ⋅ 2 ≥ 1 + 3.

(b) Suppose that a4bc is a 4-digit number that is above average, where a,
b, and c are the digits ‘1’, ‘2’, and ‘3’ (possibly in a different order).
Then 2 ⋅ b ≥ a + 4 ≥ 5. So b ≥ 3.
Similarly, we find that 2 ⋅ c ≥ 4 + b ≥ 7, hence c ≥ 4. However, this is
impossible because c was at most 3.

(c) The numbers 1243756, 1234576, and 1234567 are above average and
have digit ‘7’ in the fifth, sixth, and seventh position, respectively.

Digit ‘7’ cannot be in the first position. Indeed, suppose that 7abcdef
would be above average. Then 2 ⋅ b ≥ 7 + a ≥ 8, hence b ≥ 4. Then we
must have 2 ⋅ c ≥ a + b ≥ 5, hence c ≥ 3. Now we find (in turn) that
also d, e, f ≥ 4. It follows that both digit ‘1’ and digit ‘2’ must be in
the position of a, which is impossible.

Digit ‘7’ cannot be in the second or third position. Indeed, otherwise
the digit following ‘7’ must be at least 4, which implies that also the
digits following it must be at least 4. Digits ‘1’, ‘2’, and ‘3’ must
therefore all be in the first two positions, which is impossible.

Finally, digit ‘7’ cannot be in the fourth position. Digit ‘1’ cannot be
in the third position since 2 ⋅ 1 < 2 + 3. Because the digit in the third
position must be at least 2, the digit in the fifth position must be at
least 5. The next digit must therefore be at least 6, as must be the
digit following it. The digits ‘1’ to ‘4’ must therefore all be in the first
three positions, which is impossible.

14



C2. (a) Since x ≥ 5 is odd, we can write x = 2n + 1 for an integer n ≥ 2. Now

(x, y, z) = (2n + 1, n, n + 2) and (x, y, z) = (2n + 1, n + 1, n − 1)

are two different good triples. In both cases it is clear that y and
z are indeed positive integers and that y ≥ 2. Substitution into the
equation shows that they are indeed solutions:

(2n + 1)2 − 3n2 = n2 + 4n + 1 = (n + 2)2 − 3 and

(2n + 1)2 − 3(n + 1)2 = n2 − 2n − 2 = (n − 1)2 − 3.

Thic concludes the solution.

Remark. One way to arrive at the idea of considering these triples
is the following. First substitute x = 5. It is then easy to see that z
can be no more than 5. The case z = 5 is not possible, because then
y = 1, which is not allowed. Hence z is at most 4. For z = 1, . . . ,4
compute the corresponding value of y, if it exists. This way, you will
find two good triples with x = 5. Repeating this for x = 7 and x = 9, you
will find good triples as well. The triples found show a clear pattern:
when x increases by 2, y and z both increase by 1. This holds for both
series of triples. Using this, you can guess a general expression for y
and z when x = 2n + 1. Checking that the found triples are good by
substitution in the equation will then suffice for a complete solution.

(b) An example is triple (16,9,4). This triple is good because 162−3 ⋅92 =
13 = 42 − 3.

Remark. Stating a suitable triple and showing that it is a good triple
suffices for a complete solution. To find such a triple, one possibility
is to take the following approach. Rewrite the equation as x2 − z2 =
3y3 − 3. Both sides of the equation can be factored, which gives you
: (x − z)(x + z) = 3(y − 1)(y + 1). This will help in finding triples by
substituting different values for y. For example, you can try y = 4.
Then the right-hand side becomes 3 ⋅ 3 ⋅ 5, hence the left-hand side
becomes 5 ⋅9, 3 ⋅15, or 1 ⋅45. The value of x will always be the average
of the two factors, so x = 7, x = 9, and x = 23 in these three cases.
There are no even values for x when y = 4. If you try further values
of y, you will find even values of x for y = 7 and y = 9.
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Final Round, September 2013

Problems
For these problems not only the answer is important; you also have to describe the way you

solved the problem.

1. In a table consisting of n by n small squares some squares are coloured
black and the other squares are coloured white. For each pair of columns
and each pair of rows the four squares on the intersections of these rows
and columns must not all be of the same colour.
What is the largest possible value of n?

2. Find all triples (x, y, z) of real numbers satisfying

x + y − z = −1, x2 − y2 + z2 = 1 and − x3 + y3 + z3 = −1.

3. A

B C

D

O

The sides BC and AD of a quadrilateral
ABCD are parallel and the diagonals in-
tersect in O. For this quadrilateral ∣CD∣ =
∣AO∣ and ∣BC ∣ = ∣OD∣ hold. Furthermore
CA is the angular bisector of angle BCD.
Determine the size of angle ABC.

Attention: the figure is not drawn to scale.
You have to write down your reasoning step
by step in text and formulas. No points will
be awarded for annotations in a picture alone.

4. For a positive integer n the number P (n) is the product of the positive
divisors of n. For example, P (20) = 8000, as the positive divisors of 20 are
1, 2, 4, 5, 10 and 20, whose product is 1 ⋅ 2 ⋅ 4 ⋅ 5 ⋅ 10 ⋅ 20 = 8000.

(a) Find all positive integers n satisfying P (n) = 15n.

(b) Show that there exists no positive integer n such that P (n) = 15n2.

5. The number S is the result of the following sum:

1 + 10 + 19 + 28 + 37 +⋯ + 102013.

If one writes down the number S, how often does the digit ‘5’ occur in the
result?
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Solutions

1. We will prove that n = 4 is the largest possible n for which an n × n-table
can be coloured according to the rules. The following figure shows a valid
colouring for n = 4.

Now we prove that there is no colouring of the squares in a 5 × 5-table
satisfying the requirements. Suppose, for contradiction, that such a col-
ouring exists. Of the squares in each row either the majority is black, or
the majority is white. We may suppose that there are at least three rows
for which the majority of the squares is black (the case where there are at
least three rows for which the majority of the squares is white is treated
in an analogous way). We now consider the squares in these three rows.
Of these 15 squares at least 9 are black.

If there is a column in which each of the three rows has a black square,
then each other column can contain at most one black square in these three
rows. The total number of black squares in the three rows will therefore
be no more than 3+1+1+1+1 = 7, contradicting the fact that the number
should be at least 9.

Hence, in each column at most two of the three rows have a black square.
We consider the number of columns with two black squares in the three
rows. If there are more then three, then there are two columns in which the
same two rows have a black square, which is impossible. It follows that the
number of black squares in the three rows is no more than 2+2+2+1+1 = 8,
again contradicting the fact that this number should be at least 9.

Hence, it is impossible to colour a 5 × 5-table according to the rules. It is
clear that it also will be impossible to colour an n × n-table according to
the rules if n > 5. ◻
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2. The first equation yields z = x+y+1. Substitution into the second equation
gives x2 − y2 + (x + y + 1)2 = 1. Expanding gives 2x2 + 2xy + 2x + 2y = 0, or
2(x + y)(x + 1) = 0. We deduce that x + y = 0 or x + 1 = 0. We consider the
two cases.

� If x + y = 0, then y = −x holds. The first equation becomes z = 1.
Substitution into the third equation yields −x3 + (−x)3 + 13 = −1, or
x3 = 1. We deduce that (x, y, z) = (1,−1,1).

� If x + 1 = 0, then x = −1 holds. The first equation becomes z = y.
Substitution into the third equation yields −(−1)3 + y3 + y3 = −1, or
y3 = −1. Hence, we have (x, y, z) = (−1,−1,−1).

In total we have found two possible solutions. Substitution into the original
equations shows that these are indeed both solutions to the system. ◻

3. First, we prove that some triangles in the figure are isosceles (the top angle
coincides with the middle letter).

(1) Triangle ADC is isosceles, because ∠DAC = ∠ACB = ∠ACD. The
first equality holds because AD and BC are parallel and the second
equality follows from the fact that AC is the interior angle bisector
of angle BCD.

(2) Triangle DAO is isosceles, because ∣AD∣ = ∣CD∣ = ∣AO∣. The first
equality follows from (1) and the second equality is given in the prob-
lem statement.

(3) Triangle BCO is isosceles, because it is similar to triangleDAO (hour-
glass shape).

(4) Triangle COD is isosceles, because ∣DO∣ = ∣BC ∣ = ∣CO∣. Here the first
equality is given in the problem statement and the second one follows
from (3).

(5) Triangle BDC is isosceles, because it is similar to triangle BCO as
two pairs of corresponding angles are equal: ∠DBC = ∠OBC and
∠BDC =∠DCO =∠OCB. Here the last equality follows from (4).

(6) Triangle ADB is isosceles, because ∣AD∣ = ∣CD∣ = ∣BD∣ because of (1)
and (5).

Denote ∠ACB = α and ∠CBD = β (in degrees). From (5) it follows that

2α = β. From (3) it follows that 180○ = 2β + α = 5α, hence α = 180○

5
= 36○

and β = 72○. In the isosceles triangle ADB the top angle is equal to
∠ADB = β, hence its equal base angles are 180○−72○

2
= 54○. The requested

angle therefore equals ∠ABC =∠ABD +∠DBC = 54○ + 72○ = 126○.

18



A

B C

D

O

α

α

α
α

β

β

β

β

◻

4. a) Because P (n) = 15n is the product of the positive divisors of n, the
prime divisors 3 and 5 of P (n) must also be divisors of n. It follows
that n is a multiple of 15. If n > 15, then 3, 5, 15 and n are distinct
divisors of n, yielding P (n) ≥ 3 ⋅ 5 ⋅ 15 ⋅ n = 225n. This contradicts the
fact that P (n) = 15n. The only remaining possibility is n = 15. This
is indeed a solution, because P (15) = 1 ⋅ 3 ⋅ 5 ⋅ 15 = 15 ⋅ 15.

b) Suppose that P (n) = 15n2 holds. Again, we find that n is a multiple
of 15. It is clear that n = 15 is not a sulution, hence n ≥ 30. We
observe that n

5
> 5. It follows that 1 < 3 < 5 < n

5
< n

3
< n are six

distinct divisors of n. Thus P (n) ≥ 1 ⋅ 3 ⋅ 5 ⋅ n
5
⋅ n
3
⋅ n = n3. Because

n > 15 holds, we have P (n) ≥ n ⋅ n2 > 15n2, which contradicts the
assumption of this problem. We conclude that no n exists for which
P (n) = 15n2. ◻
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5. To illustrate the idea, we first calculate the number of fives in the result s
of the sum 1+ 10+ 19+⋯+ 100000. First notice that each term in the sum
is a multiple of nine plus 1:

s = 1 + (1 + 9) + (1 + 2 ⋅ 9) +⋯ + (1 + 11111 ⋅ 9).

The number of terms in the sum is 11111+1 = 11112 and the average value
of a term is 1+100000

2
. It follows that s = 11112 ⋅ 100001

2
= 11112

2
⋅ 100001.

Because 11112
2

= 5⋅11112
5⋅2

= 55560
10

= 5556, we find that s = 5556 + 555600000 =
555605556. Hence, the number of fives is equal to 6 in this case.

Now we will solve the actual problem. Remark that 102013 = 1 + 9 ⋅ 11 . . .1
(2013 ones). For simplicity let n = 11 . . .1 be the number consisting of 2013
ones. We see that the sum

S = 1 + (1 + 9) + (1 + 2 ⋅ 9) +⋯ + (1 + n ⋅ 9)

has exactly n + 1 terms, with an average value of 1+101023

2
. Hence S =

n+1
2
⋅ (1 + 102013).

Calculating the fraction n+1
2

gives:

n + 1

2
= 5n + 5

10
= 555 . . .560

10
= 555 . . .56,

a number with 2011 fives followed by a 6. Because the last 2013 digits of
the number 102013 ⋅ n+1

2
are all zeroes, there is no ‘overlap’ between the

non-zero digits of n+1
2

and 102013 ⋅ n+1
2

. We deduce that

S = n+1
2
⋅ (1 + 102013)

= n+1
2
+ 102013 ⋅ n+1

2

= 55 . . .56055 . . .56.

Hence S is a number that contains exactly 2011 + 2011 = 4022 fives. ◻
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BxMO/EGMO Team Selection Test, March 2014

Problems

1. Find all non-negative integers n for which there exist integers a and b such
that n2 = a + b and n3 = a2 + b2.

2. Find all functions f ∶R ∖ {0}→ R for which

xf(xy) + f(−y) = xf(x)

for all non-zero real numbers x, y.

3. In triangle ABC, I is the centre of the incircle. There is a circle tangent
to AI at I which passes through B. This circle intersects AB once more
in P and intersects BC once more in Q. The line QI intersects AC in R.
Prove that ∣AR∣ ⋅ ∣BQ∣ = ∣PI ∣2.

4. Let m ≥ 3 and n be positive integers such that n > m(m − 2). Find the
largest positive integer d such that d ∣ n! and k ∤ d for all k ∈ {m,m +
1, . . . , n}.

5. Let n be a positive integer. Daniël and Merlijn are playing a game. Daniël
has k sheets of paper lying next to each other on a table, where k is a
positive integer. On each of the sheets, he writes some of the numbers
from 1 up to n (he is allowed to write no number at all, or all numbers).
On the back of each of the sheets, he writes down the remaining numbers.
Once Daniël is finished, Merlijn can flip some of the sheets of paper (he is
allowed to flip no sheet at all, or all sheets). If Merlijn succeeds in making
all of the numbers from 1 up to n visible at least once, then he wins.
Determine the smallest k for which Merlijn can always win, regardless of
Daniël’s actions.
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Solutions

1. By AM-GM applied to a2 and b2, we find that a2 + b2 ≥ 2ab. As 2ab =
(a + b)2 − (a2 + b2), it follows that n3 ≥ (n2)2 − n3, i.e. 2n3 ≥ n4. Hence
either n = 0 or 2 ≥ n, so n = 0, n = 1, and n = 2 are the only possibilities.
For n = 0 we find a = b = 0 as solution, for n = 1 we find a = 0, b = 1 as
solution, and for n = 2 we find a = b = 2 as solution. Thus the non-negative
integers n with the desired property are precisely n = 0, n = 1, and n = 2.◻

2. Substituting x = 1 gives f(y) + f(−y) = f(1) for all y, or equivalently,
f(−y) = f(1) − f(y) for all y. Substituting y = −1 then gives xf(−x) +
f(1) = xf(x) for all x. We now substitute f(−x) = f(1) − f(x) to obtain
x(f(1)− f(x))+ f(1) = xf(x), so xf(1)+ f(1) = 2xf(x). We see that f is
of the form f(x) = c + c

x
for a certain c ∈ R.

We check whether this family of functions satisfies the equation. The left
hand side now reads xf(xy) + f(−y) = x(c + c

xy
) + c + c

−y
= xc + c, and the

right hand side reads xf(x) = x(c+ c
x
) = xc+c. Hence this function satisfies

the given equation for all c ∈ R. ◻

3. There is only one configuration. We have

∠AIP =∠IBP (inscribed angle theorem)

=∠IBQ (IB is angle bisector)

=∠IPQ (quadrilateral PBQI is cyclic)

hence AI ∥ PQ. This implies ∠IAB = ∠QPB = ∠QIB, using the cyclic
quadrilateral for the latter equality. We have already seen that ∠AIP =
∠IBQ, so △IAP ∼△BIQ (aa). Hence

∣AP ∣
∣PI ∣ =

∣QI ∣
∣BQ∣ . (1)

Moreover, ∠RIA is the angle opposite to an inscribed angle, hence equal
to ∠IPQ, which we already know to be equal to ∠AIP . Hence ∠RIA =
∠AIP . As AI is an angle bisector, we have ∠RAI = ∠PAI, so △RAI ≅
△PAI (ASA). Hence ∣AR∣ = ∣AP ∣. Moreover, I is the centre of the arc PQ
as BI is an angle bisector, so ∣PI ∣ = ∣QI ∣. Now (1) gives

∣AR∣
∣PI ∣ =

∣PI ∣
∣BQ∣ ,

implying that ∣AR∣ ⋅ ∣BQ∣ = ∣PI ∣2, as desired. ◻
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4. We prove that d = m − 1 is the largest integer satisfying the conditions.
First note that m−1 ∣ n! and that for k ≥m we have k ∤m−1, so d =m−1
indeed satisfies the conditions.

Now suppose that for some d we have d ∣ n! and k ∤ d for all k ∈ {m,m +
1, . . . , n}. We prove that d ≤ m − 1. Write d = p1p2⋯pt, where the pi
are prime for all i (but not necessarily pairwise distinct). If t = 0, then
d = 1 ≤m − 1, so we may assume that t ≥ 1. From the first condition on d,
it follows that pi ≤ n for all i. From the second condition on d, it follows
that pi /∈ {m,m+1, . . . , n} for all i. Hence pi ≤m−1 for all i. Now consider
the integers p1, p1p2, . . . , p1p2⋯pt. These are divisors of d and hence all are
not in {m,m+1, . . . , n}. Moreover, we know that p1 ≤m−1. Consider the
largest j ≤ t such that p1p2⋯pj ≤m − 1. If j < t, then

p1p2⋯pjpj+1 ≤ (m − 1)pj+1 ≤ (m − 1)(m − 1) =m(m − 2) + 1 ≤ n.

But then p1p2⋯pjpj+1 ≤ m − 1, contradicting the maximality of j. Hence
j = t, so d = p1p2⋯pt ≤m − 1.

We conclude that d = m − 1 is indeed the largest integer satisfying the
conditions. ◻

5. We give each of Daniël’s sheets of paper a different colour. Moreover, we
have n boxes with the numbers from 1 up to n on them. We make sure we
have enough chips in the colours of Daniël’s sheets. For each sheet, Merlijn
puts a chip with the colour of this sheet in every box of which the number
is on the front of this sheet. So every box will contain precisely those chips
of which the colours are those of the sheets on which this number is on the
front.

For each sheet of paper Merlijn flips, he takes a chip of the same colour
from the supply. A number is not visible on the table if and only if the
sheets on which this number was on the front, are precisely the sheets that
Merlijn flipped, i.e. if and only if the set of chips that he took is equal to
the set of chips in the box with this number. Hence Merlijn wins if and
only if the set of chips he took does not occur in any of the boxes, since
then all of the numbers are visible. Now we claim that Merlijn can win
if and only if 2k > n. So the smallest k for which Merlijn can win, is the
smallest k such that 2k > n.

Suppose 2k > n. The number of possible sets of colours is 2k, hence larger
than n. There are n boxes, so not every set of colours can occur in the
boxes. Hence Merlijn can pick a set of colours not occurring in any of the
boxes, flip the corresponding sheets, and win.
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Now suppose that 2k ≤ n. Then Daniël first fills the boxes with sets of
chips, in such a way that every possible set of colours occurs in some box.
This is possible, since there are 2k possible sets of colours, and we have at
least 2k boxes. Now Daniël writes on the front of each sheet of coloured
paper precisely those numbers whose boxes contain the colour of that sheet,
and on the back the remainder of the numbers. In this way, the chips in
the boxes correspond to the numbers on the fronts of the sheets. Now
Merlijn cannot choose a set of colours not occurring in any of the boxes;
he cannot win. ◻
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IMO Team Selection Test 1, June 2014

Problems

1. Determine all pairs (a, b) of positive integers satisfying

a2 + b ∣ a2b + a and b2 − a ∣ ab2 + b.

2. Let △ABC be a triangle. Let M be the midpoint of BC and let D be a
point on the interior of side AB. The intersection of AM and CD is called
E. Suppose that ∣AD∣ = ∣DE∣. Prove that ∣AB∣ = ∣CE∣.

3. Let a, b and c be rational numbers for which a+ bc, b+ ac and a+ b are all
non-zero and for which we have

1

a + bc +
1

b + ac =
1

a + b .

Prove that
√
(c − 3)(c + 1) is rational.

4. Let △ABC be a triangle with ∣AC ∣ = 2∣AB∣ and let O be its circumcentre.
Let D be the intersection of the angle bisector of ∠A and BC. Let E be
the orthogonal projection of O on AD and let F ≠ D be a point on AD
satisfying ∣CD∣ = ∣CF ∣. Prove that ∠EBF =∠ECF .

5. On each of the 20142 squares of a 2014 × 2014-board a light bulb is put.
Light bulbs can be either on or off. In the starting situation a number
of the light bulbs is on. A move consists of choosing a row or column in
which at least 1007 light bulbs are on and changing the state of all 2014
light bulbs in this row or column (from on to off or from off to on). Find
the smallest non-negative integer k such that from each starting situation
there is a finite sequence of moves to a situation in which at most k light
bulbs are on.
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Solutions

1. From a2 + b ∣ a2b + a it follows that

a2 + b ∣ (a2b + a) − b(a2 + b) = a − b2.

From b2 − a ∣ ab2 + b it follows that

b2 − a ∣ (ab2 + b) − a(b2 − a) = b + a2.

Hence we have a2+b ∣ a−b2 ∣ a2+b. This means that a2+b is equal to a−b2,
up to sign. We distinguish two cases: a2 + b = b2 − a and a2 + b = a − b2. In
the latter case we have a2 + b2 = a − b. But a2 ≥ a and b2 ≥ b > −b, hence
this is impossible. Therefore we must be in the former case: a2 + b = b2 −a.
This yields a2 − b2 = −a − b, hence (a + b)(a − b) = −(a + b). As a + b is
positive, we may divide by it and we get a − b = −1, hence b = a + 1. All
pairs that could possibly satisfy the conditions are of the form (a, a + 1)
for a positive integer a.

We consider these pairs. We have a2+b = a2+a+1 and a2b+a = a2(a+1)+a =
a3 + a2 + a = a(a2 + a + 1), hence the first divisibility condition is satisfied.
Furthermore, we have b2 − a = (a + 1)2 − a = a2 + a + 1 and ab2 + b =
a(a+1)2+(a+1) = a3+2a2+2a+1 = a(a2+a+1)+a2+a+1 = (a+1)(a2+a+1),
hence also the second divisibility condition is satisfied. Hence the pairs
(a, a + 1) satisfy the conditions and they are exactly the pairs satisfying
the conditions. ◻

2. We apply Menelaos’s theorem to the line through A, E and M inside
triangle BCD. This yields

∣BM ∣
∣MC ∣ ⋅

∣CE∣
∣ED∣ ⋅ r

∣DA∣
∣AB∣ = 1.

Because M is the midpoint of BC, we have ∣BM ∣
∣MC∣

= 1. Furthermore, it is

given that ∣AD∣ = ∣DE∣. Altogether this yields ∣CE∣ = ∣AB∣. ◻
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3. We have

1

a + bc +
1

b + ac =
(b + ac) + (a + bc)
(a + bc)(b + ac) = a + b + ac + bc

ab + a2c + b2c + abc2 .

Hence, the problem statement’s equality yields

(a + b)(a + b + ac + bc) = ab + a2c + b2c + abc2,

or equivalently,

a2 + ab + a2c + abc + ab + b2 + abc + b2c = ab + a2c + b2c + abc2,

or equivalently,
a2 + 2abc + ab − abc2 + b2 = 0.

We can consider this as a quadratic equation in a, of which we know that
it has a rational solution. Hence, the discriminant of this equation must
be the square of a rational number. This discriminant equals

D = (2bc + b − bc2)2 − 4b2

= (2bc + b − bc2 − 2b)(2bc + b − bc2 + 2b)
= b2(2c − 1 − c2)(2c + 3 − c2)
= b2(c2 − 2c + 1)(c2 − 2c − 3)
= b2(c − 1)2(c + 1)(c − 3).

If c = 1, then the original equation becomes

1

a + b +
1

a + b =
1

a + b ,

which has no solution. If a = 0, then the original equation becomes

1

bc
+ 1

b
= 1

b
,

which also has no solution. Hence, c ≠ 1 and a ≠ 0. In particular,

(c − 3)(c + 1) = D

b2(c − 1)2

must be the square of a rational number. ◻

4. Let G ≠ A be the intersection of AD with the circumcircle of △ABC.
Then we have ∣AG∣ = 2∣AE∣ because the projection of the centre of a circle
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on a chord of this circle is the midpoint of that chord. Let M be the

midpoint of AC. Because ∣AB∣ = ∣AC∣
2

= ∣AM ∣ and because AD is the angle
bisector of ∠BAM , we have that M is the image of B under reflection
in AD. Now we have ∠DGC = ∠AGC = ∠ABC = ∠ABD = ∠DMA =
180○ − ∠DMC, hence DMCG is a cyclic quadrilateral. Then we have
AM2 = AM ⋅AC

2
= AD⋅AG

2
= AD ⋅ AE, hence △AME ∼ △ADM (SAS).

Now we have 180○ − ∠EMC = ∠EMA = ∠MDA = ∠BDA = ∠CDF =
∠DFC =∠EFC, hence EMCF is a cyclic quadrilateral. Hence, ∠EBF =
∠EMF =∠ECF , which is exactly what we needed to prove. ◻

5. Number the rows from 1 up to 2014 and also number the columns. Consider
the following beginning situation: in row i the light bulbs in columns i,
i+ 1, . . . , i+ 1005 are on and the rest are off, in which we take the column
numbers modulo 2014. In each row and in each column there are exactly
1006 light bulbs that are on. Hence, there is no move possible. It is not
always possible to get to a situation in which less than 2014 ⋅ 1006 light
bulbs are on.

Now we shall show that it is always possible to get to a situation in which
at most 2014 ⋅ 1006 are on. Suppose, from the contrary, that in a certain
situation at least 2014 ⋅ 1006+ 1 light bulbs are on and it is not possible to
get to a situation in which less bulbs are on. If there is a row or column in
which at least 1008 bulbs are on, then we can change the states of these
bulbs in this row or column and there will be less bulbs that are on. This
is a contradiction, hence in each row and column at most 1007 bulbs are
on.

Let I be the set of rows in which exactly 1007 bulbs are on and let J1
be the set of columns in which exactly 1007 bulbs are in. We will try to
change the state of the bulbs in all rows in I. This we call the big plan.
If after executing the big plan there is a column in which at least 1008
bulbs are on, then we get a contradiction. Hence we shall assume that this
does not happen. Let J2 be the set of columns that, after executing the
big plan, contain exactly 1007 bulbs that are on. If there exists a square
(i, j) with i ∈ I and j ∈ J1 containing a bulb that is off, we can switch row
i and then column j gets more than 1007 bulbs that are on, which is a
contradiction. Hence every bulb on (i, j) with i ∈ I and j ∈ J1 is on. If
there exists a square (i, j) with i ∈ I and j ∈ J2 containing a bulb that is
off, after executing the big plan, then we get a contradiction in the same
way. Hence every bulb on (i, j) with i ∈ I and j ∈ J2 is off after executing
the big plan. Because the columns in J2 contain exactly 1007 bulbs that
are on after executing the big plan, there are 1007 − ∣I ∣ bulbs that are on
before executing the big plan. (For a set X, we denote by ∣X ∣ its number
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of elements.) In the columns of J1 there are exactly 1007 that are on, and
this also means that J1 and J2 are disjoint. In the other columns at most
1006 bulbs are on. The total number of bulbs that are on before the big
plan is at most

(1007−∣I ∣)∣J2∣+1007∣J1∣+1006(2014−∣J1∣−∣J2∣) = 1006⋅2014+∣J1∣+∣J2∣−∣I ∣⋅∣J2∣.

This has to be at least 1006 ⋅ 2014 + 1, hence ∣J1∣ + ∣J2∣ − ∣I ∣ ⋅ ∣J2∣ ≥ 1. This
yields ∣J1∣ > (∣I ∣ − 1)∣J2∣. If ∣I ∣ ≥ 2, then ∣J1∣ > ∣J2∣. By executing the big
plan, the number of columns in which 1007 bulbs are on decreases. But
after that, we again have a situation with ∣I ∣ rows containing 1007 bulbs
that are on, and in which J1 and J2 have been interchanged. Then we can
again apply the big plan, to decrease the number of columns that contain
1007 bulbs that are on again. This is a contradiction, because now we are
back in the beginning situation. We conclude that we must have ∣I ∣ = 1.

We have a situation in which there is exactly one row with exactly 1007
bulbs that are on. Analogously, we can show that there must be exactly one
column in which exactly 1007 bulbs are on. Because there are 1006⋅2014+1
bulbs that are on, each other row and column must contain exactly 1006
bulbs that are on. Now change the state of the bulbs in the row with 1007
bulbs that are on. In 1007 columns there will be 1006+1 = 1007 bulbs that
are on. We have already seen that in this situation we can decrease the
number of bulbs that are on.

We conclude that if there are more than 1006 ⋅ 2014 bulbs that are on,
it is always possible to decrease this number. Hence, the smallest k is
1006 ⋅ 2014. ◻
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IMO Team Selection Test 2, June 2014

Problems

1. Let f ∶Z>0 → R be a function such that for all n > 1 there is a prime divisor
p of n such that

f(n) = f (n
p
) − f(p).

Furthermore, it is given that f(22014) + f(32015) + f(52016) = 2013.
Determine f(20142) + f(20153) + f(20165).

2. The sets A and B are subsets of the positive integers. The sum of any two
distinct elements of A is an element of B. The quotient of any two distinct
elements of B (where we divide the largest by the smallest of the two) is
an element of A. Determine the maximum number of elements in A ∪B.

3. Let H be the orthocentre of an acute triangle ABC. The line through A
perpendicular to AC and the line through B perpendicular to BC intersect
in D. The circle with centre C through H intersects the circumcircle of
triangle ABC in the points E and F . Prove that ∣DE∣ = ∣DF ∣ = ∣AB∣.

4. Determine all pairs (p, q) of prime numbers for which pq+1+qp+1 is a square.

5. Let P (x) be a polynomial of degree n ≤ 10 with integral coefficients such
that for every k ∈ {1,2, . . . ,10} there is an integer m with P (m) = k.
Furthermore, it is given that ∣P (10) − P (0)∣ < 1000. Prove that for every
integer k there is an integer m such that P (m) = k.
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Solutions

1. If n = q with q prime, then there is only one prime divisor of n, namely
q, hence we must have that f(q) = f(1) − f(q), hence f(q) = 1

2
f(1). If

n = q2 with q prime, then n also has only one prime divisor, hence we have
f(q2) = f(q) − f(q) = 0. We will prove by induction to k that f(qk) =
2−k
2
f(1) if q is a prime number and k a positive integer. For k = 1 and

k = 2 we have already shown this. Now suppose that f(qk) = 2−k
2
f(1) for

certain k ≥ 2 and substitute n = qk+1. Then we have

f(qk+1) = f(qk) − f(q) = 2 − k
2

f(1) − 1

2
f(1) = 2 − (k + 1)

2
f(1).

This completes the induction argument.

Now we will use the second equality. We have

2013 = f(22014) + f(32015) + f(52016)

= 2 − 2014

2
f(1) + 2 − 2015

2
f(1) + 2 − 2016

2
f(1)

= −6039

2
f(1),

hence f(1) = 2013⋅2
−6039

= − 2
3
. Then we have for each prime number q that

f(q) = 1
2
f(1) = − 1

3
.

We will prove the following statement: if n = p1p2⋯pm with p1, p2, . . . , pm
not necessarily distinct prime numbers and m ≥ 0, then we have f(n) =
m−2
3

. This we will do by induction to m. For m = 0 we have n = 1 and

f(1) = − 2
3
= 0−2

3
, hence in this case it is true. Now suppose that we have

proved the induction hypothesis for certain m ≥ 0. Consider an arbitrary
n of the form n = p1p2⋯pm+1. Then n > 1, hence there is a prime factor
p ∣ n for which we have f(n) = f(n

p
) − f(p); without loss of generality this

is p = pm+1. Now it follows that

f(n) = f (p1p2⋯pm) − f(pm+1) =
m − 2

3
− −1

3
= (m + 1) − 2

3
.

This completes the induction.

Now we can calculate the answer. The prime factorisations of 2014, 2015
and 2016 are 2014 = 2 ⋅ 19 ⋅ 53, 2015 = 5 ⋅ 13 ⋅ 31 and 2016 = 25 ⋅ 32 ⋅ 7, hence

f(20142) + f(20153) + f(20165) = 6 − 2

3
+ 9 − 2

3
+ 40 − 2

3
= 49

3
.

◻
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2. Suppose that A contains at least three elements, say a < b < c. Then B
contains the three distinct elements a+ b < a+ c < b+ c. Hence, A certainly
contains the element b+c

a+c
. Apparently this fraction is an integer, hence

a+ c ∣ b+ c. But then it follows that a+ c ∣ (b+ c)− (a+ c) = b−a. We know
that b > a, hence b − a is positive, hence we must have a + c ≤ b − a. This
yields c ≤ b−2a < b, which is in contradiction with c > b. Hence, A contains
at most two elements.

Suppose that B contains at least four elements, say a < b < c < d. Then
A contains the three distinct elements d

a
, d

b
and d

c
. But A cannot contain

three distinct elements, contradiction. Hence, B contains at most three
elements.

In total A∪B contains at most 5 elements. This number can be attained,
take for example A = {2,4} and B = {3,6,12}. Now 2 + 4 = 6 ∈ B and
12
6
= 6

3
= 2 ∈ A and 12

3
= 4 ∈ A, hence this pair of sets satisfies the conditions.

We conclude that the maximum number of elements of A ∪B is 5. ◻

3. The triangle is acute, hence H lies inside the triangle. This means that E
and F lie on the short arcs AC and BC. Suppose that E lies on the short
arc AC and that F lies on the short arc BC.

If we reflect H in AC, then the reflection H ′ lies on the circumcircle of
△ABC. (This is a well-known fact, which can be proved by angle chasing
to prove that ∠AHC = 180○ −∠ABC.) On the other hand, this reflection
also lies on the circle with centre C through H, because ∣CH ′∣ = ∣CH ∣.
Hence, H ′ is the intersection point of the two circles and that is E. We
conclude that E is the image of H under the reflection in AC.

This means that EH is perpendicular to AC and hence it is the same
line as BH. Because AD is also perpendicular to AC, the lines BE are
AD parallel. Furthermore, D lies on the circumcircle of △ABC because
∠CAD +∠CBD = 90○ + 90○ = 180○. We have already seen that E lies on
the short arc AC, hence EADB is a cyclic quadrilateral (in this order).
Now we have ∠BEA +∠EAD = 180○ since BE and AD are parallel, but
also ∠EBD + ∠EAD = 180○ because of the cyclic quadrilateral. Hence,
∠BEA = ∠EBD, hence the corresponding chords BA and ED have the
same length.

Analogously we can prove that ∣AB∣ = ∣DF ∣, which solves the problem. ◻
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4. First suppose that both p and q are odd. Then the exponents in the
sum pq+1 + qp+1 are both even, from which it follows that both terms are
congruent to 1 mod 4. Hence, the sum is congruent to 2 mod 4, but this
is never a square.

Now suppose that both p and q are even. Then, they are both equal to
2. That yields pq+1 + qp+1 = 23 + 23 = 16 = 42, hence this pair satisfies the
conditions.

Finally, suppose that one of both, say p, is even and the other one is odd.
We then have p = 2 and 2q+1+q3 = a2 for a certain positive integer a. Write
q+1 = 2b with b a positive integer, then the equality becomes 22b + q3 = a2,
or equivalently

q3 = a2 − 22b = (a − 2b)(a + 2b).
Both factors on the right hand side now have to be a power of q, say
a − 2b = qk and a + 2b = ql with l > k ≥ 0. Both factors are divisible by
qk, hence also the difference is divisible by it. Hence, qk ∣ 2 ⋅ 2b = 2b+1.
However, q is an odd prime, hence the only power of q that is a divisor of
a power of two, is 1. Hence, k = 0. Now we get q3 = a + 2b and a − 2b = 1,
hence q3 = (2b + 1) + 2b = 2b+1 + 1. This yields

2b+1 = q3 − 1 = (q − 1)(q2 + q + 1).

However, q2 + q + 1 ≡ 1 mod 2 and furthermore q2 + q + 1 > 1, hence this
can never be a power of two. Contradiction.

We conclude that (p, q) = (2,2) is the only solution. ◻
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5. For i = 1,2, . . . ,10 let ci be an integer such that P (ci) = i. For i ∈
{1,2, . . . ,9} we have that

ci+1 − ci ∣ P (ci+1) − P (ci) = (i + 1) − i = 1,

hence ci+1−ci = ±1 for all i ∈ {1,2, . . . ,9}. Furthermore, it holds that ci ≠ cj
for i ≠ j, because P (ci) = i ≠ j = P (cj). We conclude that c1, c2, . . . , c10 are
ten consecutive integers, either in ascending or descending order. Hence,
we will consider the following two cases:

(A) ci = c1 − 1 + i for i = 1,2, . . . ,10 (i.e., c1, c2, . . . , c10 is an ascending
sequence of consecutive integers),

(B) ci = c1 + 1 − i for i = 1,2, . . . ,10 (i.e., c1, c2, . . . , c10 is a descending
sequence of consecutive integers).

First consider case (A). Define Q(x) = 1 + x − c1. Then for 1 ≤ i ≤ 10 we
have that

Q(ci) = Q(c1 − 1 + i) = 1 + (c1 − 1 + i) − c1 = i = P (ci),

hence P (ci) −Q(ci) = 0. Hence, we can also write

P (x) −Q(x) = R(x) ⋅
10

∏
i=1

(x − ci),

or equivalently,

P (x) = 1 + x − c1 +R(x) ⋅
10

∏
i=1

(x − ci).

Because the degree of P is at most 10, the degree of R cannot be greater
than 0. Hence R(x) is a constant, say R(x) = a with a ∈ Z. We then get
that

P (x) = 1 + x − c1 + a ⋅
10

∏
i=1

(x − ci).

Now we substitute x = 10 and x = 0:

P (10) − P (0) = 1 + 10 − c1 + a ⋅
10

∏
i=1

(10 − ci) − (1 + 0 − c1) − a ⋅
10

∏
i=1

(0 − ci)

= 10 + a ⋅ (
10

∏
i=1

(10 − ci) −
10

∏
i=1

(0 − ci)) .
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The numbers 10− c1, 10− c2, . . . , 10− c10 are ten consecutive numbers and
the numbers 0−c1, 0−c2, . . . , 0−c10 are the next ten consecutive numbers.
Hence, there is an N such that

10

∏
i=1

(10−ci)−
10

∏
i=1

(0−ci) = (N+20)(N+19)⋯(N+11)−(N+10)(N+9)⋯(N+1).

We will find a bound for this quantity. First we suppose that N + 1 > 0.
Then we have

(N + 20)(N + 19)⋯(N + 11) − (N + 10)(N + 9)⋯(N + 1)
> (N + 20)(N + 9)⋯(N + 1) − (N + 10)(N + 9)⋯(N + 1)
= 10 ⋅ (N + 9)(N + 8)⋯(N + 1)
≥ 10!.

If N + 20 < 0, then all factors are negative. Completely analogously the
absolute difference is again much greater than 10!. If N + 20 ≥ 0 and
N + 1 ≤ 0, then one of the factors is 0. Hence, exactly one of the two
terms is equal to zero and the other one is at least 10! in absolute value.
We conclude that the absolute difference always is at least 10!. Hence,
if a ≠ 0, then ∣P (10) − P (0)∣ ≥ 10! − 10 > 1000. Given is, however, that
∣P (10) − P (0)∣ < 1000. Apparently we must have that a = 0. Now we find
that

P (x) = 1 + x − c1.
Let k ∈ Z be arbitrary and pick m = k − 1 + c1. Then it holds that P (m) =
1+ (k − 1+ c1)− c1 = k. Hence for any integer k there is an integer m with
P (m) = k.

Now consider case (B). We can use the exact same reasoning, in which we
now define Q(x) = 1 − x + c1 and eventually get that

P (x) = 1 − x + c1 + a ⋅
10

∏
i=1

(x − ci).

In the same way, we deduce that a = 0, yielding

P (x) = 1 − x + c1.

And now it follows again that for any integer k there is an integer m with
P (m) = k. ◻
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Junior Mathematical Olympiad, October 2013

Problems

Part 1

1. The four symbols ◯, ◁, ☆, and ◻ represent distinct digits. Suppose
that

◯×◯ =◁◯ and ☆+☆ =◻◯.

Which digit is ☆?

A) 5 B) 6 C) 7 D) 8 E) 9

2. The Free family is driving on the German highway to a faraway resort.
Their fuel tank is full at the beginning of their journey. A third of the way
through the journey, 75% of the fuel is remaining in the fuel tank. How
much fuel is remaining in the fuel tank halfway through the journey?

A) 25% B) 33 1
3
% C) 50% D) 60% E) 62,5%

3. A football tournament with five teams is held, in which every pair of teams
plays one match against each other. Two points are awarded for winning
a match, one point is awarded for a draw, and zero points are awarded for
losing a match. After the tournament, every team has a number of points
different from all of the other teams. What are the possibilities for the
number of points of the winning team?

A) 8 B) 8, 7 C) 8, 6 D) 8, 7, 6 E) 8, 7, 6, 5

4.
4

5

A small 4 by 4 square lies partially on a larger 5 by
5 square, in such a way that one of the vertices of
the larger square lies directly beneath the centre of
the small square. What part of the large square is
covered by the small square?

A) 15% B) 16% C) 17,5%
D) 18% E) This cannot be determined.
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5.

3 4

5

61

2

A large sheet of paper can be divided into at most 6
pieces with two horizontal lines and one other line,
see figure. With five horizontal lines and five other
lines, what is the maximal number of pieces that you
can obtain?

A) 43 B) 44 C) 45 D) 46 E) 47

6. Five children, Ahmed, Bob, Celine, Dan and Eve, are standing in a queue
to buy ice cream at an ice cream van. They all have an integer number of
euros. The one or more children in front of Ahmed in the queue, together
have 4 euros. The children between Celine and Dan together have 7 euros.
The children in front of Eve together have 6 euros, and Eve has 2 euros
herself. How many euros does Ahmed have?

A) 1 B) 2 C) 3 D) 4 E) 5

7. We split the numbers from 1 up to 9 into a group of four and a group
of five. In both groups, we multiply the numbers. Then we divide the
larger of the two results by the smaller one. We require the result to be
an integer. In how many ways can we split the numbers 1 up to 9 into a
group of four and a group of five so that this is the case?

A) 1 B) 2 C) 3 D) 4 E) 5

8. John has six squares of equal size: two red ones, two grey ones, and two
blue ones. He makes a cube out of them by gluing them together. How
many different cubes can John make? Two cubes are different if they
cannot be transformed into one another by a rotation of the cube.

A) 3 B) 4 C) 5 D) 6 E) 8
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Part 2

1. What is the smallest number that can be obtained by adding three consec-
utive positive even integers, but also by adding four consecutive positive
even integers? (A number is positive if it is larger than 0.)

2. Nick has red and blue marbles. All red marbles have the same weight, and
so do all blue marbles. Nick weighs a red marble and a blue one: together
they weigh 30 grams. Then he weighs a number of red marbles and a blue
one: they weigh 180 grams. Exactly the same total number of marbles,
but now with one red instead of one blue marble, together weigh 60 grams.
What is the weight of a red marble in grams?

3. You have square tiles with edges of length 1 metre, 2 metres, 3 metres, and
so on. You have more than enough tiles of each kind. What is the length
of the side of the smallest square you can make using precisely 11 of these
tiles?

4. How many numbers between 1 and 1000 are not divisible by 2, divisible
by 3, not divisible by 5, and divisible by 7?

5. A collection of distinct positive integers satisfies the following. Every triple
of integers in this collection adds up to less than 37. Every quadruple of
integers in this collection adds up to more than 37. What is the maximum
number of integers this collection can contain?

6. a b 2 0
1 3 c d −

c d a b

In this problem, a, b, c, and d represent digits not
equal to 0, in such a way that the calculation to the
right is correct. Determine all possibilities for cdab.

7. In the figure below there is a triangle ABC. The segment AB is horizontal,
and the segment CD is vertical. The segment DB is thrice as long as AD.
Moreover, E and F divide CD into three parts of equal length. The two
horizontal lines through E and F divide, together with CD, the triangle
ABC into six parts. Triangle ABC has area 1. What is the combined area
of the three grey parts?
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A BD

C

E

F

8. 4 20 18

7 11 9

25 2 6

Ionica and Jeanine cross out four numbers each in
the figure to the right, so that exactly one number
remains. They each add up the numbers they crossed
out. Ionica’s sum is thrice as large as Jeanine’s sum.
Which numbers could be the remaining one?
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Solutions

Part 1

1. D) 8 5. D) 46

2. E) 62,5% 6. B) 2

3. D) 8, 7, 6 7. D) 4

4. B) 16% 8. D) 6

Part 2

1. 36 5. 6

2. 25 grams 6. 5367

3. 5 metres 7. 5
12

4. 19 8. 6 and 18
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