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Introduction

The Dutch Mathematical Olympiad consists of two rounds. The first round is held on the
participating schools and consists of eight multiple choice questions and four open questions
(see page 1–4). Students get two hours to work on the paper. On January 25, 2008, in total
3004 students of 201 secondary schools participated in this first round.

The best students are invited for the second round. For the first time we set different thresh-
olds for students from different grades, in order to stimulate young students to participate.
Those students from grade 5 (4, ≤ 3) that scored 26 (22, 18) points or more on the first round
(out of a maximum of 36 points) were invited to the second round. Also some outstanding
participants in the Kangaroo math contest or the Pythagoras Olympiad were invited.

As a new initiative, we organized training sessions at six universities in the country for the
143 students who had been invited for the second round in September 2009. Former Dutch
IMO-participants are involved at each of the universities.

From those 143, in total 123 participated in the second round on September 12th, 2008 at
the Eindhoven University of Technology. This final round contains five problems for which
the students have to give extensive solutions and proofs. They have three hours for the paper
(see page 5–7). After the prices had been awarded in the beginning of November, the Dutch
Mathematical Olympiad concluded its 47th edition 2008. In 2011 we will have our 50th
edition.

The 31 most outstanding candidates of the Dutch Mathematical Olympiad 2008 were invited
to an intensive seven-month training programme, consisting of weekly problem sets. Also,
the students met twice for a three-day training camp, three times for a day at the university,
and finally for a six-day training camp in the beginning of June.

In May, ten of them were invited to participate to the first Benelux Mathematical Olympiad,
held in Bergen op Zoom, the Netherlands (see page 8–12). We think this has been a very
stimulating experience for our students.

In June, 24 out of these 31 candidates were left. Out of those, the team was selected by a
final selection test on June 13, 2009 (see page 13–16). The team will have a training camp
from July 6 until July 13, together with the team from New Zealand.

In the meantime, a new edition of the Dutch Mathematical Olympiad had started. In October
2008, at the VU University Amsterdam we organized the first Junior Mathematical Olympiad
for the winners of the popular Kangaroo math contest (see page 17–20). The 30 best students
of grade 2, grade 3 and grade 4 were invited. We hope all of them will enjoy those problems
so much, that they will participate to the first round in the years that come.

The new first round took place at participating schools on January 30, 2009 (see page 21–24).
We are very happy to see that the number of schools as well as the number of participants
has increased again: 230 schools and 4379 participants, a new record since ages!
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The Dutch team for IMO 2009 Bremen consists of

• Wouter Berkelmans (18 y.o., participated in IMO 2006, 2007 as well)

• Raymond van Bommel (17 y.o., participated in IMO 2007, 2008 as well)

• Harm Campmans (17 y.o.)

• Saskia Chambille (18 y.o.)

• David Kok (16 y.o.)

• Maarten Roelofsma (18 y.o., participated in IMO 2008 as well)

As a promising young student, we bring

• Merlijn Staps (14 y.o.)

The team is coached by

• Quintijn Puite (team leader), Eindhoven University of Technology

• Birgit van Dalen (deputy leader), Leiden University

The Dutch delegation for IMO 2009 Bremen further consists of

• Wim Berkelmans (member AB, observer A), VU University Amsterdam

• Hans van Duijn (observer A), Eindhoven University of Technology

• Tom Verhoeff (observer A), Eindhoven University of Technology

• Gerhard Wöginger (observer A), Eindhoven University of Technology

• Ronald van Luijk (observer A), Leiden University

• Jelle Loois (observer B), Ortec

• Anick van de Craats (observer C), Netherlands Forensic Institute

• Lidy and Theo Wesker (observer C), University of Amsterdam

• Karst Koymans, University of Amsterdam

• Freek van Schagen, VU University Amsterdam

• Rob Wieleman, Movisie Utrecht

• Wendoline Timmerman, Ministry of Education, Culture and Science

We are grateful to Jinbi Jin for the translation into English of most of the problems and the solutions.
We also thank Lieneke Notenboom-Kronemeijer for her useful remarks concerning the formulation of
the First Round 2009 paper.
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First Round
Dutch Mathematical Olympiad
Friday, January 25, 2008
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• Time available: 2 hours.

• The A-problems are multiple choice questions. Only one of the five options given is correct.
Please state clearly which letter precedes the correct solution. Each correct answer is worth 2
points.

• The B-problems are open questions; the answers to these questions are a number, or numbers.
Each correct answer is worth 5 points. Please work accurately, since an error in your calculations
may cause your solution to be considered incorrect and then you won’t get points at all for
that question. Please give your answers exactly, for example 11

81
or 2 + 1

2

√
5 or 1

4
π + 1.

• You are not allowed to use calculators and formula sheets; you can only use a pen, a compass
and a ruler or set square. And your head, of course.

• This is a competition, not an exam. The main thing is that you have fun solving unusual
mathematical problems. Good luck!

A-problems

A1. Alex, Birgit, Cedric, Dion and Ersin all write their names on a sheet of paper, and they put
those five sheets into a large box. They each take one sheet out of the box at random. Now
it turns out that Birgit has Alex’ sheet, Cedric has Dion’s and Dion has Ersin’s. Also, Ersin
doesn’t have Cedric’s sheet. Whose sheet does Alex have?

A) Alex’ B) Birgit’s C) Cedric’s D) Dion’s E) Ersin’s

A2. In a magic 3 × 3 square, the three row sums, the three column sums
and the two diagonal sums are all equal to each other. (A row sum
being the sum of the numbers on a certain row, etc.) In the magic
3 × 3 square shown here three numbers have already been filled in.
What number must be filled in instead of the question mark?

A) 2 B) 4 C) 6 D) 8 E) 9

7

3
?

10

A3. Calculating 6× 5× 4× 3× 2× 1 yields 720. How many divisors does
720 have? (A divisor of an integer n is a positive integer by which n is
divisible. For example: the divisors of 6 are 1, 2, 3 and 6; the divisors
of 11 are 1 and 11.)

A) 6 B) 8 C) 20 D) 30 E) 36

A4. Of a quadrilateral ABCD, we know that |AB| = 3, |BC| = 4, |CD| =
5, |DA| = 6 en ∠ABC = 90◦. (|AB| stands for the length of segment
AB, etc.) What is the area of quadrilateral ABCD?

A) 16 B) 18 C) 181
2 D) 20 E) 6 + 5

√
11

4

5

6

A 3 B

D
C

1



A5. How many five-digit numbers (like 12345 or 78000; the first digit must
be non-zero) are there that end on a 4 and that are divisible by 6?

A) 1500 B) 2000 C) 3000 D) 7500 E) 8998

A6. We have a square ABCD with |AB| = 3. On AB, there is a point E
such that |AE| = 1 and |EB| = 2. AC and DE intersect in H. What
is the area of triangle CDH?

A) 9
8 B) 2 C) 21

8 D) 3 E) 27
8

H

A E B

CD

A7. The seven blocks S E T T E E S are shuffled. For example, you can
get E E E S S T T or T E S E T E S .
How many different “words” of length 7 can we get this way? (Any
combination of the 7 letters counts as word.)

A) 210 B) 420 C) 840 D) 1260 E) 5040

A8. How many distinct real solutions does the equation
(
(x2 − 2)2 − 5

)2 = 1 have?

A) 4 B) 5 C) 6 D) 7 E) 8

B-problems

B1. We number both the rows and the columns of an 8×8 chessboard with
the numbers 1 to 8. A number of grains is placed onto each square, in
such a way that the number of grains on a certain square equals the
product of its row and column numbers. How many grains are there
on the entire chessboard?

B2. We take 50 distinct integers from the set {1, 2, 3, . . . , 100}, such that
their sum equals 2900. What is the minimal number of even integers
amongst these 50 numbers?

B3. For a certain x, we have x + 1
x = 5. Define n = x3 + 1

x3 . It turns out
that n is an integer.
Calculate n. (Give your answer using decimal notation.)

B4. Inside a rectangle ABCD, there is a point P with |AP | = 6, |BP | = 7
and |CP | = 5. What is the length of segment DP?

C

BA

D

P
5

6 7
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First Round
Dutch Mathematical Olympiad
Friday, January 25, 2008

Solutions OLYMPIADE
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A1. C) Cedric When we put the data into a table, we see that Birgit’s
and Cedric’s sheets haven’t been picked yet. Since Ersin didn’t pick
Cedric’s sheet, he must have picked Birgit’s. So Alex must have picked
Cedric’s sheet.

A B C D E
? A D E ?

A2. B) 4 See the figure. From F + 10 + 3 = F + D + 7, we get
D = 6. Then from 7+E +3 = C +D+E = C +6+E, we can deduce
that C = 7 + 3− 6 = 4.

A3. D) 30 The number 720 only has the prime factors 2, 3 and 5.
The prime factor 2 occurs four times (once in 2, twice in 4 and once
in 6), the prime factor 3 twice (once in 3 and 6), and 5 just once. The
divisors without any factors 3 or 5 are 1, 2, 4, 8 and 16. The divisors
having one factor 3 and no factors 5 are 3, 6, 12, 24, 48. And the
divisors having two factors 3 and no factors 5 are 9, 18, 36, 72 and
144. So 720 has 15 divisors that do not have factors 5. Multiplying
all of these divisors by 5 gives us the other 15 divisors, which makes
30 in total.
Alternative solution: Every divisor of 720 = 24×32×51 can be written
as 2a × 3b × 5c with 5 possibilities for a (being 0 to 4), 3 possibilities
for b (being 0 to 2) and 2 for c (being 0 and 1). So we conclude that
720 has 5× 3× 2 = 30 divisors.

7

310

A B
D E

F
C

A4. B) 18 According to Pythagoras’ Theorem, we have |AC| =
5. So triangle ACD is isosceles with base AD. In this triangle, the
altitude from C divides the triangle into two triangles with sides 3, 4
and 5, and we can divide quadrilateral ABCD in three triangles with
sides 3, 4 and 5. So its area must be equal to 3× 6 = 18.

4

5
C

BA 3

3

3
D

A5. C) 3000 If x is a positive multiple of 6 that ends with a 4, then the next multiples of
6 end with a 0 (x + 6), a 6 (x + 12), a 2 (x + 18), an 8 (x + 24), a 4 (x + 30), so the next
multiple of 6 that ends with a 4 is x+30. So any 30 consecutive positive integers must contain
exactly one integer with the desired properties. How many such integers lie between 10000
and 99999? Since we have 90000 consecutive positive integers, we find 90000 ÷ 30 = 3000
such integers amongst them.

A6. E) 27
8 Draw a line through H parallel to AD, and let P and Q

be the intersections of this line with AB and CD, respectively. Now
we have |HP | : |HQ| = |AE| : |CD| = 1 : 3, so |HQ| = 3

4 × |PQ| =
3
4 × 3 = 9

4 . So the area of triangle CDH equals 1
2 × 3× 9

4 = 27
8 .

QD C

P E BA

H
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A7. A) 210 We have 6 + 5 + 4 + 3 + 2 + 1 = 21 (or
(
7
2

)
) possibilities

to arrange the S-blocks onto the 7 places (see figure). For each choice,
we have 4+3+2+1 = 10 (or

(
5
2

)
) possibilities to arrange the T-blocks

on the remaining 5 places; after which the positions of the E-blocks
are determined. So we have 21× 10 = 210 possibilities.
Alternative solution: If all the blocks were different, we would have got
7! possibilities. But the three E-blocks aren’t different, so we end up
counting each word 3! times this way. Similarly for the two S-blocks
and the two T-blocks. So we find 7!

3!×2!×2! = 7×6×5×4×63!
63!×4 = 7× 6× 5 =

210 different words.

S S . . . . .
S . S . . . .
S . . S . . .

...
. S S . . . .
. S . S . . .
. S . . S . .

...
. . S S . . .
. . S . S . .

...
A8. B) 5 This equation is equivalent to

(x2 − 2)2 − 5 = 1 or (x2 − 2)2 − 5 = −1.

The first is equivalent to x2 − 2 =
√

6 of x2 − 2 = −
√

6, with 2 and 0
solutions respectively (since −

√
6 + 2 < 0).

The latter is equivalent to x2 − 2 = 2 of x2 − 2 = −2, with 2 and 1
solution(s) respectively. So we have 2+0+2+1 = 5 solutions in total.

B1. 1296 In the first column, we have, successively, 1× 1, 1× 2, 1× 3, . . . , 1× 8 grains.
So, in the first column: 1× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
In the second column: 2× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
In the third column is: 3× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)....
Finally, in the eighth column: 8× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
So, in total: (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
Since 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 1

2 × 8× (1 + 8) = 36, there are 362 = 1296 grains on the
board.

B2. 6 The 50 odd integers from the set {1, 2, 3, . . . , 100} sum up to 1
2 ×50× (1+99) =

2500, which is still 400 short of 2900. Now exchange the smallest odd integers for the largest
even integers, in pairs, since 400 is even. First exchanging 1 and 3 for 100 and 98 makes the
sum equal to 2694. The next step gives us 2694− 5− 7 + 96 + 94 = 2872. Which is still less
than 2900, so we require another exchange. Now exchanging 9 and 11 for 20 and 28 works,
making the sum 2900 with 6 even integers, showing along the way that that is the minimal
number of even integers we need to do so.

B3. 110 We know that x must satisfy x + 1
x = 5, so x2 − 5x + 1 =

0, from which follows that x = x1,2 = 5±
√

21
2 . Note that x1x2 = 1.

Now we have x3 + x−3 = x3
1 + x3

2 = 1
8

((
5 +

√
21

)3
+

(
5−

√
21

)3
)

=
1
8

((
53 + 3 · 52 ·

√
21 + 3 · 5 ·

√
21

2
+
√

21
3
)

+
(
53 − 3 · 52 ·

√
21 + 3 · 5 ·

√
21

2 −
√

21
3
))

=
2
8

(
53 + 3 · 5 · 21

)
= 110.

Alternative solution: From (x + 1
x)3 = x3 + 3x2( 1

x) + 3x( 1
x)2 + ( 1

x)3 = x3 + 3x + 3
x + 1

x3 we
can deduce that x3 + 1

x3 = (x + 1
x)3 − 3(x + 1

x) = 53 − 3× 5 = 110.

B4. 2
√

3 Let Q, R, S, T be the orthogonal projections of P on
AB, BC, CD, DA, respectively. Then we have
|AQ|2 + |QP |2 = 36 and |BQ|2 + |SP |2 = 25 (since |BQ| = |CS|),
so |AQ|2 + |QP |2 + |BQ|2 + |SP |2 = 61. We also have |BQ|2 + |QP |2 =
49.
So |DS|2 + |SP |2 = |AQ|2 + |SP |2 = 61− 49 = 12 and |DP | =

√
12 =

2
√

3.

C

BA

D

P

S

T R

Q
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Second Round
Dutch Mathematical Olympiad
Friday, September 12, 2008
Eindhoven University of Technology

Problems
OLYMPIADE

W
ISKUNDE

N
E

D
E

R
LA

N
D

S
E

• Available time: 3 hours.

• Writing down just the answer itself is not sufficient; you also need to describe the way you
solved the problem.

• Usage of calculators and formula sheets are not allowed; you are only allowed to use a pen, a
compass and a ruler or set square. And your common sense of course.

• Please write the solutions of each problem on a different sheet of paper. Good luck!

1. Suppose we have a square ABCD and a point S in the interior of this square.
Under homothety with centre S and ratio of magnification k > 1, this square
becomes another square A′B′C ′D′.
Prove that the sum of the areas of the two quadrilaterals A′ABB′ and
C ′CDD′ are equal to the sum of the areas of the two quadrilaterals B′BCC ′

and D′DAA′. CB

A

B C

D

S

DA

2. Find all positive integers (m,n) such that

3 · 2n + 1 = m2.

3. Suppose that we have a set S of 756 arbitrary integers between 1 and 2008
(1 and 2008 included).
Prove that there are two distinct integers a and b in S such that their sum
a + b is divisible by 8.

4. Three circles C1, C2, C3, with radii 1, 2, 3 respectively, are externally tangent.
In the area enclosed by these circles, there is a circle C4 which is externally
tangent to all three circles.
Find the radius of C4.

C1

2C

C3

5. We’re playing a game with a sequence of 2008 non-negative integers. A move
consists of picking a integer b from that sequence, of which the neighbours
a and c are positive. We then replace a, b and c by a − 1, b + 7 and c − 1
respectively. It is not allowed to pick the first or the last integer in the
sequence, since they only have one neighbour.
If there is no integer left such that both of its neighbours are positive, then
there is no move left, and the game ends.
Prove that the game always ends, regardless of the sequence of integers we
begin with, and regardless of the moves we make.
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Second Round
Dutch Mathematical Olympiad
Friday, September 12, 2008
Eindhoven University of Technology

Solutions
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1. Let p = |AB| and q = |A′B′|, so q = k · p. Note that the sides AB and
A′B′ are parallel, because of the homothety. Hence quadrilateral A′ABB′ is
a trapezium, so its area equals the sum of the area of the triangles 4ABB′

and 4A′B′A, so it is equal to 1
2 · |AB| · h1 + 1

2 · |A
′B′| · h1 = p+q

2 h1, where
h1 is the distance between the parallel lines AB and A′B′. Similarly, we see
that the area of quadrilateral C ′CDD′ is equal to p+q

2 h3, where h3 is the
distance between CD and C ′D′. Hence the area of the two trapezia together
is p+q

2 (h1 + h3). In the same way, we see that the area of the two trapezia
A′ADD′ and B′BCC ′ together is equal to p+q

2 (h2 + h4). Now note that
h1 + h3 = q − p = h2 + h4, so the two areas are equal.

h1 h3

h2

h4

CB

A

B C

D

S

DA

q p

2. We can rewrite the equation as 3 · 2n = (m− 1)(m + 1). Since n > 0, we see that 3 · 2n is an even
number, so at least one of m− 1,m + 1 is even as well. Hence they’re both even. As the factors
m − 1 and m + 1 differ by 2, they can’t both contain multiple factors of 2. Hence one of these
factors contains exactly one factor 2. This factor either contains the factor 3 as well, or it doesn’t.
So it must be equal to either 2 or 6. The other factor then must differ from this one by exactly 2.
If this factor is equal to 2, then the other one has to be either 0 or 4. Since none of these contain
a factor 3, none of these solve the equation. If this factor is equal to 6, then the other one has to
be either 4 or 8, both of which yield a solution, as they are powers of 2. Hence there are exactly
two solutions, given by (m,n) = (5, 3) and (m,n) = (7, 4).

3. We divide the integers 1 up to 2008 amongst eight distinct subsets V1 to V8, where Vi is the subset
consisting of the 251 integers of the form 8k + i with 0 ≤ k ≤ 250. So we have

V1 = {1, 9, . . . , 2001}, . . . , V8 = {8, 16, . . . , 2008}.

The union of these subsets consists of the positive integers up to 2008.
Now suppose for a contradiction that there are no two integers a, b such that a + b is divisible by
8. Then let us consider the distribution of S among the Vi. Note that the sum of two multiples of
8 is again a multiple of 8, so we see that V8 then cannot contain more than 1 element of S. Since
the sum of two integers from V4 is a multiple of 8, V4 cannot contain more than 1 element of S
either. Next, we see that the sum of a integer from V1 and one from V7, is a multiple of 8, so at
least one of them contains no elements of S. Similarly, we see that at least one of V2 and V6, and
at least one of V3 and V5 contain no elements of S at all. Now note that every Vi contains at most
251 elements of S. Hence V1, V2, V3, V5, V6, V7 together contain at most 3 · 251 = 753 elements
of S. So the sets V1 to V8 together contain at most 755 elements of S, which is a contradiction,
since S consists of 756 elements, and each element is contained in a certain Vi.
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4. Let A,B, C be the centres of the circles C1, C2, C3 respectively. The triangle
formed by these three centres, has sides |AB| = 3, |AC| = 4 and |BC| = 5,
hence it is a right-angled triangle. Now choose the x- and the y-axis in such
a way that A = (0, 0), B = (3, 0) and C = (0, 4). Let r and M = (x, y) be
the radius and centre of C4, respectively. Then we see that |AM | = r + 1,
|BM | = r + 2 and |CM | = r + 3. This implies the three following equations
with three unknowns.

C

A Bx

y

r2 + 2r + 1 = |AM |2 = x2 + y2 (1)

r2 + 4r + 4 = |BM |2 = (3− x)2 + y2 = x2 − 6x + 9 + y2 (2)

r2 + 6r + 9 = |CM |2 = x2 + (4− y)2 = x2 + y2 − 8y + 16 (3)

Taking the difference of (1) and (2), we see that 6x− 9 = −2r− 3, so 6x = 6− 2r, hence x = 3−r
3 .

Taking the difference of (1) and (3), we see that 8y−16 = −4r−8, so 8y = 8−4r, hence y = 2−r
2 .

Substituting this in (1) yields r2 + 2r + 1 = x2 + y2 = (3−r)2

9 + (2−r)2

4 = 9−6r+r2

9 + 4−4r+r2

4 , thus
23
36r2+ 11

3 r−1 = 23
(

r
6

)2+22
(

r
6

)
−1 = 0. Substituting p = r

6 , we then see that 0 = 23p2+22p−1 =
(23p − 1)(p + 1). This gives the two possible solutions r

6 = p = −1 and 23 · r
6 = 23p = 1. But

since r has to be positive, we see that r has to be equal to 6
23 . (We can deduce from this that

M = (x, y) = (21
23 , 20

23).)

5. Consider an arbitrary sequence n1, n2, . . . , n2008 and an arbitrary sequence of moves. The first
integer n1 is reduced by 1 every time we pick b = n2, since n1 is one of the neighbours of n2.
If we pick b = nk, where k > 2, then we see that n1 remains unchanged. Hence we can pick
b = n2 at most n1 times. So in our sequence of moves, either there is a last time that the
move b = n2 occurs, or that move doesn’t occur at all. In the former case, we consider the
sequence of moves following that move, and in the latter case, we simply consider the sequence
of all moves. In this new sequence of moves, we never pick b = n2. So all we do in this new
sequence, is picking b = n3 up to b = n2007. Let n2 now be the value of the second integer at
the beginning of this new sequence (this integer need not be the same as before, since every
time we’ve picked b = n2 until then, it is increased by 7, and every time we’ve picked b = n3

until then, it is reduced by 1). In the new sequence, n2 is reduced by 1 every time we pick
b = n3, and remains unchanged if we pick any other integer (i.e. b = n4 up to b = n2007).
Hence we can conclude that in the new sequence, either there is a last time that the move
b = n3 occurs, or this move doesn’t occur at all. So from that point onward, we only pick the
integers b = n4 up to b = n2007. We can repeat this argument to see that, from some point
onward, only b = n2007 is picked, and that there either is a last time that the move b = n2007 oc-
curs, or this move doesn’t occur at all, indicating that our sequence of moves ends at some point. �

Variant Suppose that there exists an infinite sequence of moves. By the pigeonhole
principle, there is a move b = nk that occurs infinitely often. Now let k be the smallest
integer for which the move b = nk occurs infinitely often. Then we see that the integer
b = nk−1 is only picked finitely often, hence is increased only finitely often. But this integer
is decreased infinitely often; namely for every time we pick b = nk. This yields our contradiction. �

Alternative solution For each sequence of 2008 integers n1, n2, . . . , n2008, we compute
the weighted sum S = 7 ·n1 + 72 ·n2 + 73 ·n3 + · · ·+ 72007 ·n2007 + 72008 ·n2008. If we replace a, b, c
in this sequence by a− 1, b + 7, c− 1, where b = nk for a certain integer k such that 2 ≤ k ≤ 2007,
then S becomes equal to S − 7k−1 + 7 · 7k − 7k+1 = S − 7k−1, so every move reduces the value of
S. On the other hand, we note that S is a sum of non-negative integers, hence is a non-negative
integer itself. Writing down the new value of S after each move, we get a decreasing sequence of
non-negative integers. Such a sequence can not be infinite. Hence the game ends after a finite
number of moves.
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1st BENELUX MATHEMATICAL OLYMPIAD
Bergen op Zoom (Netherlands)

May 9, 2009

Language: English

Problem 1. Find all functions f : Z>0 → Z>0 that satisfy the following two conditions:

• f(n) is a perfect square for all n ∈ Z>0;

• f(m + n) = f(m) + f(n) + 2mn for all m,n ∈ Z>0.

Problem 2. Let n be a positive integer and let k be an odd positive integer. Moreover, let
a, b and c be integers (not necessarily positive) satisfying the equations

an + kb = bn + kc = cn + ka.

Prove that a = b = c.

Problem 3. Let n ≥ 1 be an integer. In town X there are n girls and n boys, and each girl
knows each boy. In town Y there are n girls, g1, g2, . . . , gn, and 2n − 1 boys, b1, b2, . . . ,
b2n−1. For i = 1, 2, . . . , n, girl gi knows boys b1, b2, . . . , b2i−1 and no other boys. Let r be an
integer with 1 ≤ r ≤ n. In each of the towns a party will be held where r girls from that town
and r boys from the same town are supposed to dance with each other in r dancing pairs.
However, every girl only wants to dance with a boy she knows. Denote by X(r) the number
of ways in which we can choose r dancing pairs from town X, and by Y (r) the number of
ways in which we can choose r dancing pairs from town Y .
Prove that X(r) = Y (r) for r = 1, 2, . . . , n.

Problem 4. Given trapezoid ABCD with parallel sides AB and CD, let E be a point on
line BC outside segment BC, such that segment AE intersects segment CD. Assume that
there exists a point F inside segment AD such that ∠EAD = ∠CBF . Denote by I the point
of intersection of CD and EF , and by J the point of intersection of AB and EF . Let K be
the midpoint of segment EF , and assume that K is different from I and J .
Prove that K belongs to the circumcircle of4ABI if and only if K belongs to the circumcircle
of 4CDJ .

Time allowed: 4 hours and 30 minutes
Each problem is worth 7 points

We are grateful to the authors of these problems for making them available for the Benelux Olympiad. We have

agreed upon not publishing them on any forum or by any other means before August 1st, 2009. Participating

to the BxMO entails that you respect this agreement.
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1st BENELUX MATHEMATICAL OLYMPIAD
Bergen op Zoom (Netherlands)

May 9, 2009

Language: English

Solutions

Problem 1.

Solution 1. Let a be a positive integer satisfying f(1) = a2. We will prove that f(n) =
na2 + n(n− 1) for all n by induction on n. For n = 1 it follows from the definition of a. Now
suppose we have f(n) = na2 + n(n− 1) for a certain positive integer n. Then by the second
condition with m = 1, we have

f(n + 1) = f(n) + f(1) + 2n = na2 + n(n− 1) + a2 + 2n = (n + 1)a2 + n(n + 1).

This completes the induction.

Suppose a > 1 and let p be a prime divisor of a. We know that f(p) = pa2 + p(p − 1) is a
square, and as it is obviously divisible by p, it must be divisible by p2. Hence a2 + p − 1 is
divisible by p. But this is a contradiction, as a and p are both divisible by p.

We conclude a = 1 and f(n) = n2 for all n ∈ Z>0. This function indeed satisfies the condi-
tions. �

Comment. Proving that a = 1 can be done in various ways. Here is another possibility. We
have f(n) = na2 +n(n−1) = n(a2−1)+n2 for all n > 0. Suppose a > 1, then n = a2−1 > 0
and f(a2 − 1) = 2(a2 − 1)2. As all prime factors in (a2 − 1)2 occur an even number of times,
the prime factor 2 occurs an odd number of times in f(a2 − 1) = 2(a2 − 1)2. Hence this is
not a square, which contradicts the first condition.

Solution 2. Define g(n) = f(n)−n2 for all n ∈ Z>0. Then we can rewrite the second condition
as

g(m + n) + (m + n)2 = g(m) + m2 + g(n) + n2 + 2mn,

hence g(n) satisfies the functional equation

g(m + n) = g(m) + g(n) for all m,n ∈ Z. (4)

Let b = g(1) = f(1)− 1 ≥ 0. By setting n = 1 in (4) we find g(m + 1) = g(m) + b, and hence
by induction we have g(n) = nb for all n. Therefore f(n) = nb + n2 for all n. Suppose b > 0,
then taking n = b yields f(b) = 2b2, which is not a square, contradicting the first condition.

We conclude b = 0 and f(n) = n2 for all n ∈ Z>0. This function indeed satisfies the condi-
tions. �
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Problem 2.

Solution 1. First suppose a = b. From an + kb = bn + kc it then follows that b = c, which
means we are done. Similarly, we are done if b = c or c = a. Now suppose a 6= b, b 6= c en
c 6= a. We will derive a contradiction.

From an + kb = bn + kc we find an − bn = k(c− b). In a similar way we find two more such
equations, so we have

an − bn = k(c− b), bn − cn = k(a− c), cn − an = k(b− a). (5)

Multiply these three equations and divide by (a− b)(b− c)(c− a):

an − bn

a− b
· bn − cn

b− c
· cn − an

c− a
=

an − bn

b− c
· bn − cn

c− a
· cn − an

a− b
= −k3. (6)

Note that the left-hand side is the product of three integers.

Suppose n is odd. Then xn is a monotonically increasing function of x. So if a < b, then
an < bn, and so on. Hence an−bn

a−b is positive and the same holds for the other two factors at
the left of (6). Contradiction with −k3 < 0. We conclude that n is even.

Consider a, b and c modulo 2. According to the box principle, at least two of those are
congruent, say a ≡ b mod 2. The integer an−bn

a−b = an−1 + an−2b + · · · + abn−2 + bn−1 is the
sum of n terms, and as a ≡ b mod 2, all of these terms are even, or all of these terms are
odd. In any case, the sum of the n terms is even. So the left-hand side of (6) is even, while
the right-hand side is odd. This is a contradiction, which finishes the proof. �

Solution 2. As in the first solution, we assume a 6= b, b 6= c en c 6= a and we find

an − bn = k(c− b), bn − cn = k(a− c), cn − an = k(b− a). (5)

First consider the case that n is odd. Then xn is a monotonically increasing function of x. So
if a < b, then an < bn, and so on. So suppose a > b, then we have an > bn, hence an− bn > 0.
Hence by (5) we have c− b > 0. So bn − cn < 0 and therefore a− c < 0. From this we have
cn− an > 0, so b− a > 0, which contradicts the assumption. Similarly we get a contradiction
if a < b.

Now assume n is even. Consider the equalities in (5) modulo 2. As k is odd, the first
equality gives a − b ≡ c − b mod 2, hence a ≡ c mod 2. Now the integer cn−an

c−a =
cn−1 + cn−2a + · · · + can−2 + an−1 is the sum of n terms, and as a ≡ c mod 2, all of these
terms are even, or all of these terms are odd. In any case, the sum of the n terms is even. Let
i be the exponent of the prime factor 2 in c− a. Then the exponent of the prime factor 2 in
cn−an is at least i+1. From the third equality in (5) we derive that the exponent of 2 in b−a
is at least i+1 as well. Similarly to the previous argument, the exponent of 2 in an− bn must
be at least i + 2, and the same holds for the exponent of 2 in c− b. Finally the exponent of
2 in bn−cn and hence also in a−c must be at least i+3. This contradicts the definition of i. �
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Problem 3.

As X(r) and Y (r) are dependent on n, we will from now on denote them by Xn(r) and Yn(r).

There are
(
n
r

)
ways to pick r girls from town X, and

(
n
r

)
ways to pick r boys from town X,

and r! ways to make r pairs of these boys and girls. As all girls in town X know all boys in
town X, each girl is then with a boy she knows. Hence

Xn(r) =
(

n

r

)2

· r! =
(n!)2

r!((n− r)!)2
.

Let An(r) be the number of different ways in which r girls from town Y can dance with r
boys from town Y , forming r pairs, each girl with a boy she knows, such that gn is one of the
girls in the pairs. Let Bn(r) = Yn(r)−An(r).

If girl gn is not in one of the pairs, then boys b2n−2 and b2n−1 are not in one of the pairs
either. So for n ≥ 2 and r ≤ n− 1 we have Bn(r) = Yn−1(r).

On the other hand, if girl gn is in one of the pairs, then we can delete that pair to find a way
in which r−1 girls from a town with n−1 girls can dance with r−1 boys from the same town.
Given such a set of r − 1 pairs, we can extend this set to a set of r pairs from a town with
n girls by adding the pair (gn, bi) for some i. For bi we can choose from {b1, b2, . . . , b2n−1}
except that the r − 1 boys that are already in one of the pairs are not allowed. So there are
(2n− 1)− (r− 1) = 2n− r possibilities for bi. We conclude that for n ≥ 2 and r ≥ 2 we have
An(r) = (2n− r)Yn−1(r − 1).

We will now prove by induction on n that for r = 1, 2, . . . , n we have

Yn(r) =
(n!)2

r!((n− r)!)2
, (7)

which finishes the proof.

For n = 1 we just need to prove that Y1(1) = 1. As there is only one girl and one boy, this is
trivial. Now let k ≥ 1 and suppose (7) is true for n = k. Then for r = 2, 3, . . . , k we have

Yk+1(r) = Ak+1(r) + Bk+1(r)
= (2(k + 1)− r)Yk(r − 1) + Yk(r)

= (2k + 2− r)
(k!)2

(r − 1)!((k − r + 1)!)2
+

(k!)2

r!((k − r)!)2

=
r(2k + 2− r)(k!)2 + (k − r + 1)2(k!)2

r!((k − r + 1)!)2

=
(k!)2

(
(2kr + 2r − r2) + (k2 + r2 + 1− 2kr + 2k − 2r)

)
r!((k + 1− r)!)2

=
(k!)2(k2 + 1 + 2k)
r!((k + 1− r)!)2

=
((k + 1)!)2

r!((k + 1− r)!)2
,

which is what we wanted to prove. Furthermore, for r = 1 we have

Yk+1(1) = Ak+1(1) + Bk+1(1) = (2k + 1) + Yk(1) = (2k + 1) + k2 = (k + 1)2.
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Finally, for r = k + 1 we have

Yk+1(k + 1) = Ak+1(k + 1) = (k + 1)Yk(k) = (k + 1)
(k!)2

k!
=

((k + 1)!)2

(k + 1)!
.

This completes the induction. �

Problem 4.

We use signed distances throughout the proof. Assume that B is inside segment CE; in the
other case a similar proof can be used. We have

∠FAE = ∠DAE = ∠CBF = ∠EBF.

As B and F are on different sides of the line AE, we conclude that ABEF is a cyclic
quadrilateral. Hence JA · JB = JE · JF . Furthermore, K belongs to the circumcircle of
ABI if and only if JA · JB = JK · JI. Therefore K belongs to the circumcircle of ABI
if and only if JE · JF = JK · JI. Expressing JI = JF + FI, JE = JF + FE and
JK = 1

2(JE + JF ) = 1
2FE + JF , we find that K belongs to the circumcircle of ABI if and

only if

(JF + FE)JF = (1
2FE + JF )(JF + FI) ⇔

1
2 · FE · JF = (1

2FE + JF )FI ⇔

JF =
FE · FI

FE − 2FI
.

Since ABEF is cyclic and AB is parallel to CD, we have

∠FEC = ∠FEB = 180◦ − ∠FAB = ∠FDC.

Hence CEDF is cyclic as well, yielding IC · ID = IE · IF . Furthermore, K belongs to the
circumcircle of CDJ if and only if IC ·ID = IK ·IJ . Therefore K belongs to the circumcircle
of CDJ if and only if IE · IF = IK · IJ . Expressing IJ = IF + FJ , IE = IF + FE and
IK = 1

2(IE + IF ) = 1
2FE + IF , we find that K belongs to the circumcircle of CDJ if and

only if

(IF + FE)IF = (1
2FE + IF )(IF + FJ) ⇔

1
2 · FE · IF = (1

2FE + IF )FJ ⇔

FJ =
FE · IF

FE + 2IF
⇔

JF =
FE · FI

FE − 2FI
.

We conclude that K belongs to the circumcircle of ABI if and only if K belongs to the cir-
cumcircle of CDJ . �

Comment 1. After deriving that what needs to be proved is: JE ·JF = JK ·JI if and only if
IE · IF = IK · IJ , the solution comes down to eliminating all but three well-chosen distances
and then manipulating the equalities until it is clear that they are equivalent. The above
solution is just one way of doing this.

Comment 2. The conditions JE · JF = JK · JI and IE · IF = IK · IJ are two of the
many equivalent ways of expressing that the points E, F and J , I are in harmonic division,
i.e. (EFJI) = −1, where K is the midpoint of segment EF . Observing this fact would also
suffice to finish the solution.
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Team Selection Test

Valkenswaard, June 13, 2009

Problem 1. Let n ≥ 10 be an integer, and consider n in base 10. Let S(n) be the sum of
the digits of n. A stump of n is a positive integer obtained by removing a number of digits
(at least one, but not all) from the right side of n. E.g.: 23 is a stump of 2351. Let T (n) be
the sum of all the stumps of n.
Prove that n = S(n) + 9 · T (n).

Problem 2. Let ABC be a triangle, P the midpoint of BC, and Q a point on segment CA
such that |CQ| = 2|QA|. Let S be the intersection of BQ and AP . Prove that |AS| = |SP |.

Problem 3. Let a, b and c be positive reals such that a + b + c ≥ abc. Prove that

a2 + b2 + c2 ≥
√

3 abc.

Problem 4. Find all functions f : Z → Z satisfying

f(m + n) + f(mn− 1) = f(m)f(n) + 2

for all m, n ∈ Z.

Problem 5. Suppose that we are given an n-gon of which all sides have the same length,
and of which all the vertices have rational coordinates. Prove that n is even.

13



Solutions of the Team Selection Test 2009

Problem 1.

Let us denote the digits of n from right to left by a0, a1, . . . , ak. We have

n = a0 + 10a1 + · · ·+ 10kak.

A stump of n consists of (from right to left) the digits ai, ai+1, . . . , ak, where 1 ≤ i ≤ k.
We see that such a stump is equal to ai + 10ai+1 + · · · + 10k−iak. Summation over i then
yields T (n). Now write T (n) in a different way, by taking all the terms involving a1, then
those involving a2, and so on (effectively, as we will see below, we are changing the order of
summation; it does not matter whether we first sum over i from 1 up to k, and then, for each
i, sum over j from i up to k, or we first sum over the j from 1 up to k, and then, for each j,
sum over i from j up to k):

T (n) =
k∑

i=1

(
ai + 10ai+1 + · · ·+ 10k−iak

)
=

k∑
i=1

k∑
j=i

10j−iaj

=
k∑

j=1

j∑
i=1

10j−iaj =
k∑

j=1

(
1 + 10 + · · ·+ 10j−1

)
aj =

k∑
j=1

10j − 1
10− 1

aj ,

where we used the summation formula for the geometric series in the final step. So we get

9 · T (n) =
k∑

j=1

(10j − 1)aj =
k∑

j=0

(10j − 1)aj .

Recall that S(n) =
∑k

j=0 aj . Hence we have

S(n) + 9 · T (n) =
k∑

j=0

(10j − 1 + 1)aj =
k∑

j=0

10jaj = n.

�

Problem 2.

Solution 1. Let T be a point on BQ such that PT is parallel to AC. Then PT joins the
midpoints of BC and BQ, so |PT | = 1

2 |CQ| = |QA|. So we see that ATPQ is a quadrilateral
of which two sides are parallel and of the same length. This implies that it is a parallelogram.
Since any parallelogram has the property that its diagonals bisect each other, we see that
|AS| = |SP |. �
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Solution 2. We apply Menelaos’ Theorem to triangle PCA. Since the points B, S and Q are
collinear, we have

−1 =
PB

BC
· CQ

QA
· AS

SP
=
−1
2
· 2
1
· AS

SP
= −AS

SP
.

Hence AS
SP = 1, from which we can deduce that S is the midpoint of the segment AP . �

Solution 3. Let M be the midpoint of QC and let x = [AQS] = [QMS] = [MCS]
and y = [CPS] = [PBS]. Since [CPA] = [PBA], we see that [ASB] = 3x. But then
we have [AQB] = x + 3x, whereas on the other hand, we have 2[AQB] = [QCB], so
2x + 2y = [QCB] = 2[AQB] = 8x. Hence y = 3x. But then [ASB] = 3x = y = [SPB], from
which we conclude that |AS| = |SP |. �

Solution 4. Let R be the intersection of CS and AB. According to Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1,

from which we deduce that 2|AR| = |RB|. Let a = [PSC], b = [QSC], c = [QSA], d = [RSA],
e = [RSB] and f = [PSB]. Then we see that

b + a + f = 2(c + d + e) en a + e + f = 2(b + c + d),

which implies that
b− e = 2e− 2b,

hence b = e. Furthermore, we have 2d = e and 2c = b, hence c = d and c + d = e. Now
a + e + f = 2(b + c + d) implies that

a + f = b + 2c + 2d = b + c + d + e,

so
2(a + f) = a + b + c + d + e + f = [ABC].

Hence 2|PS| = |PA|, implying that |PS| = |AS|. �

Problem 3.

First of all, note that a2 + b2 + c2 ≥ ab+ bc+ ca, and hence that 3(a2 + b2 + c2) ≥ (a+ b+ c)2.
Applying AM-GM we see that a+b+c ≥ 3(abc)

1
3 . On the other hand, note that a+b+c ≥ abc.

Now we have the following two inequalities:

a2 + b2 + c2 ≥ 1
3(a + b + c)2 ≥ 3(abc)

2
3 ,

a2 + b2 + c2 ≥ 1
3(a + b + c)2 ≥ 1

3(abc)2.

Raising the former equation to the 3
4 -th power, and the latter one to the 1

4 -th (which is
allowed, since every expression is positive):

(a2 + b2 + c2)
3
4 ≥ 3

3
4 (abc)

1
2 ,

(a2 + b2 + c2)
1
4 ≥ 3−

1
4 (abc)

1
2 .

Taking the product of these two equations, we then see that

a2 + b2 + c2 ≥ 3
1
2 (abc),

which is as desired. �
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Problem 4.

Suppose that there exists a c ∈ Z such that f(n) = c for all n. Then 2c = c2 + 2, so we
get the equation c2 − 2c + 2 = 0, which has no solutions in Z. Hence f cannot be constant.
Now substitute m = 0. This yields the equation f(n) + f(−1) = f(n)f(0) + 2, from which
we deduce that f(n)(1− f(0)) is constant. Since f(n) isn’t a constant function, we see that
f(0) = 1. Using the same equation, we then get f(−1) = 2. Now substitute m = n = −1.
This yields f(−2) + f(0) = f(−1)2 + 2, from which follows that f(−2) = 5. Substituting
m = 1 and n = −1 now yields f(0) + f(−2) = f(1)f(−1) + 2, which implies that f(1) = 2.

Now substitute m = 1, then we obtain f(n + 1) + f(n− 1) = f(1)f(n) + 2, or, equivalently

f(n + 1) = 2f(n) + 2− f(n− 1).

By induction, it then follows that f(n) = n2+1 for all non-negative n, and, using the equation

f(n− 1) = 2f(n) + 2− f(n + 1)

also for all non-positive n. Hence f(n) = n2 + 1 for all n, and we can easily check that this
function satisfies the given equation. �

Problem 5.

Let (x1, y1), . . . , (xn, yn) be the coordinates of the vertices of the given n-gon. Define ai =
xi+1 − xi, bi = yi+1 − yi for i = 1, 2, . . . , n, where xn+1 = x1 and yn+1 = y1. Then we note
that ai, bi ∈ Q and

∑n
i=1 ai =

∑n
i=1 bi = 0; and that the sum a2

i + b2
i does not depend on i.

By multiplying with a suitable factor we can get rid of denominators and common divisors of
the ai and bi, so we may assume that ai, bi ∈ Z and that gcd(a1, . . . , an, b1, . . . , bn) = 1. Let
c be the integer such that a2

i + b2
i = c for all i.

Suppose that c is odd. Then for every i, exactly one of ai, bi is odd. Hence of the 2n integers
ai, bi, exactly n are odd. Then we get 0 =

∑n
i=1(ai + bi) ≡ n mod 2, implying that n is even.

Now suppose that c is even. Then, for all i, we have ai ≡ bi mod 2. If there exists an i
such that ai and bi are both odd, then c = a2

i + b2
i ≡ 1 + 1 ≡ 2 mod 4. If there exists an

i such that ai and bi are both even, then c = a2
i + b2

i ≡ 0 + 0 ≡ 0 mod 4. These two cases
cannot occur together. Hence either all of the ai and bi are odd, or all of them are even.
The latter statement contradicts our assumption about the greatest common divisor of the ai

and bi. The former statement yields 0 =
∑n

i=1 ai ≡ n mod 2, implying again that n is even. �
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Junior Mathematical Olympiad October 3, 2008
Vrije Universiteit Amsterdam

Problems part 1

• The problems in part 1 are five-choice questions. At each question exactly one of the given
five answers is correct. Indicate clearly on the answer sheet which letter corresponds to the
right answer.

• Each correctly given answer will get you 2 points. For wrong answers no points are sub-
tracted.

• You are allowed scrap paper, as well as a compass and a ruler or protractor. Calculators and
other electronic devices are not allowed.

• The time allowed for this part is 60 minutes.

• Good luck!

1. A rectangle has been divided into four smaller rectangles. The areas of
three of the small rectangles are 6, 8 and 9 (see the figure). Determine
the area of the fourth small rectangle.

A) 42
3 B) 5 C) 51

3 D) 52
3 E) 7

6 9

8?

2. We multiply all odd numbers between 0 and 100. What is the last digit of the result?

A) 1 B) 3 C) 5 D) 7 E) 9

3. Six students are sitting next to each other on six chairs, numbered from 1 to 6. Now they all
get up at the same time, and then they sit down on a chair again, according to the table below.

standing up from chair number 1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

sitting down on chair number 4 3 1 6 5 2

This process of standing up and sitting down again happens 642 times. Which chair
is now occupied by the student who was at the start sitting on chair number 1?

A) 1 B) 2 C) 3 D) 4 E) 6

4. Consider the sequence of positive integers 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . in which the n-th positive
integer occurs exactly n times. We divide the hundredth number in the sequence by 5. What
is the remainder?

A) 0 B) 1 C) 2 D) 3 E) 4

5. In a quadrilateral ABCD the sides AB and CD have equal length.
Moreover, three angles are given: ∠A1 = 65◦, ∠A2 = 80◦ and ∠B =
50◦. Determine ∠C2.

A) 30◦ B) 40◦ C) 50◦ D) 60◦ E) 65◦
50

80

65A

B

2

1

1

2
?

C

D

6. How many (positive or negative) integers n exist such that 12
n+5 is an integer?

A) 2 B) 6 C) 8 D) 10 E) 12

17



7. What is (
1− 1

4

)
×

(
1− 1

9

)
×

(
1− 1

16

)
×

(
1− 1

25

)
×

(
1− 1

36

)
×

(
1− 1

49

)
?

A) 1
7 B) 2

7 C) 3
7 D) 4

7 E) 5
7

8. How many integers of the form bbcac exist, where a, b and c are digits (0, 1, . . . , 9) with c > a
and with b equal to the mean of a and c?

A) 20 B) 21 C) 22 D) 23 E) 24

9. Two identical rhombuses are lying on top of each other, one of them
rotated 90 degrees compared to the other. The area where the two
rhombuses overlap, happens to be a regular octagon: all eight sides
have equal length and all eight angles have equal sizes. Determine the
smallest angle of the rhombus, indicated in the figure by α.

A) 22,5◦ B) 30◦ C) 40◦ D) 45◦ E) 60◦

α

10. How many of the integers 1, 2, 3, . . . , 2008 are not divisible by 2 and not divisible by 5 either?

A) 403 B) 603 C) 803 D) 1205 E) 1405

11. A large pond is being emptied by means of three pumps. Using just the first pump, emptying
the pond would take four days. Using just the second pump, it would take three days, and
using just the third pump, it would take two days. How many days does it take to empty the
pond using all three pumps at the same time?

A) 1
9 day B) 12

13 day C) 1 day D) 13
12 day E) 3 days

12. Through the vertices A, B and C of a triangle ABC passes a circle
with midpoint M . Of the three angles at the midpoint, two are equal
to 123◦ and 139◦ (see figure). Determine ∠B12.

A) 45◦ B) 49◦ C) 50◦ D) 51◦ E) 59◦

1
2
3

139

B

A

C

1
2

M

13. If we divide the number 22008 − 22007 + 22006 − 22005 + 22004 − 22003 + 22002 − 22001 by the
number 22000, then the result is an integer (that is, there is no remainder). Determine this
integer.

A) 4 B) 36 C) 72 D) 170 E) 200

14. Consider an integer abcd consisting of four distinct digits a, b, c and d (where a is not allowed
to be 0). Of this integer you know that abcd× 11 = ac9bd. The digit b can be equal to only
one of the following five options. Which one?

A) 2 B) 3 C) 4 D) 5 E) 6

15. A block of cheese consisting of 3 × 4 × 5 small cubes of cheese, has
been perforated by a thin pin along a space diagonal. How many of
the small cubes have been perforated by the pin?

A) 5 B) 8 C) 10 D) 11 E) 12
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Problems part 2

• The problems in part 2 are open questions. At each question your answer should be a
number or an expression (for example 22

3 or a2 ). Write this answer on your answer sheet
at the indicated place.

• Each correctly given answer will get you 2 points. For wrong answers no points are sub-
tracted.

• You are allowed scrap paper, as well as a compass and a ruler or a protractor. Calculators
and other electronic devices are not allowed.

• The time allowed for this part is 60 minutes.

• Good luck!

1. What is the maximum number of points of intersection between a circle and a triangle?

2. During a tournament with six players, each player plays a match against each other player.
At each match there is a winner; ties do not occur. A journalist asks five of the six players
how many matches each of them has won. The answers given are 4, 3, 2, 2 and 2. How many
matches have been won by the sixth player?

3. A 3 by 5 rectangle has been coloured like a chess board. What is the
total area of the black parts inside the triangle drawn in the figure?

4. I have written four numbers on a piece of paper. In six different ways I can choose two and
add them up. The resulting sums are 11, 15, 16, 16, 17 and 21. Now I multiply all of the four
numbers on my piece of paper. What is the result?

5. What is the sum of the positive integers smaller than 100,000 (a hundred thousand) in which
only the digits 0 and 1 occur?

Turn over for the remaining questions. www.wiskundeolympiade.nl/junior
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6. Find the smallest positive integer with the property that if you multiply its digits, the result
is 1890.

7. In this stretched chess board the small rectangles have sides with
length 1 up to 8. Determine the total area of all black rectangles.

8

7

6

5

4

821 3 4 5 6 7

1

2

3

8. Write the following expression as one fraction in its simplest terms, given that for a, b and c
we have a× b× c = 1.

1
1 + a + (a× b)

+
1

1 + b + (b× c)
+

1
1 + c + (c× a)

9. The two smallest circles in the figure have radiuses 2 and 3. Find the
radius of the largest circle.

2

3

?

10. A hexagon has six angles all equal to 120 degrees. The lengths of
four consecutive sides are 2000, 2006, 2008 and 2009. Determine the
perimeter of the hexagon.

2008

2009
2006

2000

www.wiskundeolympiade.nl/junior
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• Time available: 2 hours.

• The A-problems are multiple choice questions. Only one of the five options given is correct.
Please state clearly which letter precedes the correct solution. Each correct answer is worth 2
points.

• The B-problems are open questions; the answers to these questions are a number, or numbers.
Each correct answer is worth 5 points. Please work accurately, since an error in your calculations
may cause your solution to be considered incorrect and then you won’t get points at all for
that question. Please give your answers exactly, for example 11

81
or 2 + 1

2

√
5 or 1

4
π + 1.

• You are not allowed to use calculators and formula sheets; you can only use a pen, a compass
and a ruler or set square. And your head, of course.

• This is a competition, not an exam. The main thing is that you have fun solving unusual
mathematical problems. Good luck!

A-problems

A1. Ella has answered three sets of questions. Of the first set, consisting of 25
questions, she answered 60% correctly. Of the second set, consisting of 30
questions, she answered 70% correctly, and of the third set, consisting of 45
questions, she answered 80% correctly. Now, if we combine the three sets to
form one set of 100 questions, what percentage of these 100 questions did
Ella answer correctly?
(A) 68% (B) 70% (C) 72% (D) 74% (E) 76%

A2. How many of the integers from 10 to 99 (10 and 99 included) have the
property that the sum of their digits is equal to the square of an integer?
(An example: The sum of the digits of 27 is equal to 2 + 7 = 9 = 32.)

(A) 13 (B) 14 (C) 15 (D) 16 (E) 17

A3. Ronald rolls three dice. These dice look like normal dice, but the numbers
on their sides are unusual.
On the sides of the first dice are the numbers 1, 1, 2, 2, 3, 3.
On the sides of the second dice are the numbers 2, 2, 4, 4, 6, 6.
On the sides of the third dice are the numbers 1, 1, 3, 3, 5, 5.
He then adds up the three numbers he gets from rolling the three dice.
What is the probability that the resulting number is odd?

(A) 1
4 (B) 1

3 (C) 1
2 (D) 2

3 (E) 3
4

A4. Three distinct numbers from the set {1, 2, 3, 4, 5, 6, 7, 8, 9} are placed in the
three squares at the top of the figure to the right, after which the numbers
are added as indicated in said figure. We call Max the highest number that
can appear in the bottom square, and Min the lowest number that can appear
there. What is the value of Max−Min?
(A) 16 (B) 24 (C) 25 (D) 26 (E) 32

++

+
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A5. The ratio between the lengths of the diagonals of a rhombus is 3 to 4. (A
rhombus is an equilateral quadrilateral.) The sum of the lengths of the
diagonals is 56. What is the perimeter of this rhombus?
(A) 80 (B) 96 (C) 100 (D) 108 (E) 160

A6. Wouter walks from his home to the fitness center. He could also have chosen
to go by bike, in which case he would have covered the distance between his
home and the fitness center 7 times as fast. However, he has left his bike at
home. After having walked 1 km he reaches a bridge. Continuing on foot
will take Wouter just as long as walking back home to get his bike and then
cycle to the fitness center. What is the distance between the bridge and the
fitness center in kilometers?
(A) 8

7 (B) 7
6 (C) 6

5 (D) 5
4 (E) 4

3

A7. On the sides of an equilateral triangle, we draw three squares. The sides of
these squares that are parallel to the sides of the triangle are extended until
they intersect. These three intersections form another equilateral triangle.
Suppose that the length of a side of the original triangle is equal to 1. What
is the length of a side of the large equilateral triangle?

(A) 1 + 2
√

2 (B) 5− 1
2

√
3 (C) 3

√
2 (D) 1 + 2

√
3 (E) 2

√
6

1 1

1

A8. Consider all four-digit numbers in which each of the digits 3, 4, 6 and 7
occurs exactly once. How many of these numbers are divisible by 44?
(A) 2 (B) 4 (C) 6 (D) 8 (E) 12

B-problems

B1. A sheet of paper shows a grid of 101 by 101 white squares. A chain is formed
by coloring squares grey as shown in the figure to the right. The chain starts
in the upper left-hand corner and goes on until it cannot go on any further.
Only part of the grid is shown. In total, how many squares are colored grey
in the original grid of 101 by 101 squares?

B2. The integer N consists of 2009 consecutive nines. A computer calculates
N3 = (99999 . . . 99999)3. How many nines does the number N3 contain in
total?

99999 . . . 99999︸ ︷︷ ︸
2009×

B3. Using a wide brush, we paint the diagonals of a square tile, as in the figure.
Exactly half of the surface of this tile is covered with paint. Given that the
width of the brush is 1, as indicated in the figure, what is the length of the
side of the tile?

1

B4. Determine a triplet of integers (a, b, c) satisfying:
a + b + c = 18

a2 + b2 + c2 = 756

a2 = bc
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A1. (C) 72% 60% of 25 is 15; 70% of 30 is 21; and 80% of 45 is 36. So in total, Ella answered
15 + 21 + 36 = 72 of the 100 questions correctly.

A2. (E) 17 We check how many of these numbers have sum of digits equal to 1, 2,
etc. There is 1 number with sum 1 (being 10); there are 2 with sum 2 (being 20 and
11); etc.; 9 with sum 9 (being 90, 81, . . . , 18); also, 9 with sum 10 (being 91, 82, . . . , 19);
etc.; and finally, 1 with sum 18 (being 99); see the table below. Then the sum of dig-
its is a square of an integer (i.e. 1, 4, 9 or 16) in 1 + 4 + 9 + 3 = 17 of the 90 cases.

sum: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
number: 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1

A3. (B) 1
3 Note that the second die only has even numbers on it, and that the third die

only has odd numbers on it. So essentially the question is to find the probability that rolling the
first die gives an even number. Since 2 of the 6 numbers on this die are even, this probability is
equal to 2

6 = 1
3 .

A4. (D) 26 Let’s say we put a, b, and c in the top three squares. Then
the result in the bottom square is a + 2b + c. So we can maximize this result
by making first b, then a and c as large as possible. Taking b = 9, a = 8 and
c = 7 then yields 33 as result. In the same way, we can minimize the result
by making first b, then a and c as small as possible. Taking b = 1, a = 2,
c = 3 yields 7 as result. The difference between these numbers is 33−7 = 26. 2a+ b+c

a cb

a+b b+c

++

+

A5. (A) 80 Note that the diagonals have lengths 3
7 ·56 = 24 and 4

7 ·56 =
32. So the halves of diagonals have lengths 12 = 3 · 4 and 16 = 4 · 4. So the
rhombus is 4 times larger than the rhombus in the figure, which consists of
four triangles with sides 3, 4 and 5. Hence the sides of the original rhombus
have length 4 · 5 = 20, and thus the perimeter has length 4 · 20 = 80.

5 5

55
3

3

44

A6. (E) 4
3 Let x be said distance and let us suppose that he has spent a quarter of an hour

walking by then. Then continuing walking will take him x quarters of an hour. On the other
hand, if he decides to walk back home to pick up his bike, he’ll first have to spend one quarter
of an hour to get back, and then 1+x

7 quarters of an hour by bike; since he travels 7 times faster
that way. Then we have x = 1 + 1+x

7 , so 7x = 7 + (1 + x), or 6x = 8. We deduce that x = 8
6 = 4

3 .
Taking for ‘quarter of an hour’ any other time unit will give us the same result.

A7. (D) 1 + 2
√

3 In 4ABC, ∠A is half of 60◦, so 30◦. Also, ∠C is a right
angle, so 4ABC is a 30◦-60◦-90◦-triangle, where |BC| = 1. So it’s half of
an equilateral triangle with sides 2: |AB| = 2. Now we calculate |AC| with
the Theorem of Pythagoras: |AC| =

√
22 − 12 =

√
3. So the required length

is
√

3 + 1 +
√

3.
CA

B

3

2
1

A8. (A) 2 Suppose that n, having digits a, b, c and d (so n = 1000a + 100b + 10c + d) is
divisible by 44. Then it is also divisible by 11. Since the number m = 1001a + 99b + 11c is also
divisible by 11, so is m − n. Hence m − n = a − b + c − d is a multiple of 11. But this number
is at most the sum of the two highest digits, minus the sum of the lowest two, so 13 − 7 = 6,
and in the same way, we see that this number is at least −6. So it has to be equal to 0. Thus
a+ c = b+d, and since the sum of the digits is 20, we have a+ c = b+d = 10. First suppose that
d = 4. Then b = 6 so we get two possibilities for n, namely 3674 and 7634. But neither of these
is divisible by 4, let alone by 44. Now suppose that d = 6, then we have b = 4, and in this case
we get 3476 and 7436, both of which are divisible by 44. Finally, note that since n is divisible by
4, d must be even. We deduce that we have only 2 such numbers that are divisible by 44.
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B1. 5201 We can subdivide this grid of 1012 squares as follows. In
the upper left corner, we have one (grey) square, then two L-shaped pieces,
one having 3 squares (one of which grey), the other having 5 squares (all
of which grey). Then we have two more L-shaped pieces, one having 7
squares (one of which grey), the other having 9 squares (all of which grey),
etc. Of the last two L-shaped pieces, the first one has 199 squares (one of
which grey), and the second one has 201 squares (all of which grey). We
have 50 pairs of L-shapes in total, so the total number of grey squares is
1+(1+5)+(1+9)+(1+13)+ . . .+(1+201) = 1+(6+10+14+ . . .+202) =
1 + 1

2 · 50 · (6 + 202) = 5201.
Alternative solution In each pair of these L-shapes, there are 4 more
grey squares than white squares. So there are 50 · 4 = 200 more grey squares
than white squares in the 1012−1 = 10200 squares contained in the 50 pairs
of L-shapes, so we have 5000 white squares and 5200 grey ones. Since the
upper left square is grey, in total, we have 5201 grey squares.

B2. 4017 93 = 729; 993 = 970299; 9993 = 997002999. It seems to
be the case that in general, the third power of a number n consisting of k
consecutive nines takes the following form: first k − 1 nines; then a 7; then
k−1 zeroes; then a 2; and finally k nines. To prove this, we write n = 10k−1.
Indeed: (10k−1)3 = 103k−3 ·102k +3 ·10k−1 = 102k(10k−3)+(3 ·10k−1).
The number 10k−3 can be written as 999 . . . 997 with k−1 nines. Multiplied
with 102k this gives a number that ends in 2k zeroes. Adding 3 · 10k − 1 to
this number, the last k+1 zeroes are replaced with 2999 . . . 999 with k nines.
So in total, we have (k− 1)+ k nines; in our case, k = 2009, so we have 4017
nines.

99999 . . . 99999︸ ︷︷ ︸
2009×

B3. 2 + 2
√

2 We only need to look at a quarter of the tile: 4ABC. The
area of 4PQR is half of the area
of 4ABC. The triangles are similar, so corresponding sides have a ratio of
1 :
√

2, so |QR| : |BC| = 1 :
√

2.
Now we calculate |BQ| using the Theorem of Pythagoras in 4BQQ′:

2|BQ|2 = |BQ′|2 + |BQ|2 = 12, so |BQ| =
√

1
2 = 1

2

√
2. Now let us write x

for |QR|. Then we find x +
√

2 =
√

2 · x, so x(
√

2− 1) =
√

2 or equivalently,
x =

√
2√

2−1
=

√
2(
√

2+1)
2−1 = 2 +

√
2. Hence |BC| = x +

√
2 = 2 + 2

√
2 (or

|BC| =
√

2 · x =
√

2 · (2 +
√

2) = 2
√

2 + 2).

2

2

1

2

1

2

P

Q

R

A

C

B

x

Q

B4. (a, b, c) = (−12, 6, 24) of (a, b, c) = (−12, 24, 6) (one answer is enough)
We calculate (b + c)2 in two different ways. (b + c)2 = (18− a)2 = 324− 36a + a2 and (b + c)2 =
b2 + 2bc + c2 = (756 − a2) + 2a2. So a2 − 36a + 324 = a2 + 756, or −36a = 756 − 324 = 432,
so a = −12. Substituting this in the first and in the last equation, we obtain the equations
b + c = 30 and bc = 144. Trying some divisors of 144 = 122, we then should be able to find a
solution. Or we can just substitute c = 30−b in the last equation, yielding the quadratic equation
b(30− b) = 144, or equivalently b2 − 30b + 144 = 0. We can factorize this as (b− 6)(b− 24) = 0
(or we can use the abc-formula) to see that we have two solutions b = 6 (and c = 24) or b = 24
(and c = 6).
Alternative solution Just as above, we see that a = −12. Then by substituting this in all three
equations, we see that b+c = 30, b2 +c2 = 756−144 = 612 and bc = 144. Combining the last two
equations yields (b−c)2 = b2+c2−2bc = 612−2·144 = 324, or equivalently b−c = ±

√
324 = ±18.

Adding the equations b + c = 30 and b − c = −18, we get 2b = (b + c) + (b − c) = 12 so b = 6
(and c = 24). Adding the equations b + c = 30 and b− c = 18, we get 2b = (b + c) + (b− c) = 48
so b = 24 (and c = 6).
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