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Solutions

1. (a) First note that there are 3 -4 = 12 horizontal borders between two cards, and also 12
vertical borders. Suppose that k& of these borders count as —1, then there are 24 — k borders
counting as +1. This gives a monochromaticity of (24 — k) - (+1) + k- (—1) = 24 — 2k.
Hence, the monochromaticity is always an even number.

If all cards have the same colour, then all borders count as +1, and we get the maximal
monochromaticity of 24. Can 22 also occur as the monochromaticity? No, and we will prove
that by contradiction. Suppose there is an assignment of cards having monochromaticity 22.
Then there has to be one border with —1 and the rest must count as +1. In other words,
all adjacent cards have the same colour, except for one border. Consider the two cards at
this border, and choose two adjacent cards so that you obtain a 2 x 2 square. For each pair
of cards, you can find such a 2 x 2 square. If you start on the left top and go around the
four cards in a circle (left top — right top — right bottom — left bottom — left top), then
you cross four borders. Since you are starting and ending in the same colour, you must
have crossed an even number of borders where the colour is changing. This, however, is in
contradiction with the assumption that there is only one border at which the two cards
have different colours. We conclude that the monochromaticity can never be 22.

The next possibilities for large monochromaticites are 20 and 18. Then there have to be
2 or 3 borders between cards of different colours. This can be achieved by the following
colourings:

Altogether, the three largest numbers on Niek’s list are 24, 20, and 18. O

(b) Suppose that we put the cards such that the monochromaticity is . Then we can turn
half of the cards, as in a chess board pattern: we turn a card if and only if all of the
adjacent cards are not turned. With this operation all borders between cards change sign,
and we obtain a monochromaticity of —z. In other words, x is a possible value for the
monochromaticity if and only if —xz is possible. Therefore, the three smallest numbers on
Niek’s list are the negatives of the three greatest numbers: —24, —20, and —18. U

(c) We already proved that the monochromaticity is always an even number. The smallest
possible positive even number is 2. This monochromaticity can be obtained by having 13
borders between squares of the same colour, and 11 borders between squares of different
colours. There are many ways to achieve this, for example:




2. Version for klas 5 & klas 4 and below

(a)

Suppose towards a contradiction that we can find three teams in a balanced tournament
that all play against each other, say teams A, B and C. Because n > 5 there are two other
teams, say D and E. Since A, B and C already play three matches between them, there are
no other matches between the quadruple A, B, C and D. In other words: D does not play
against A, B and C. The same holds for team E. If we now consider the quadruple A, B, D
and E we see that there are at most two matches: A against B, and possibly D against E.
This means that we have found four teams such that there are not exactly three matches
between these four teams. This is a contradiction. O

We will first show that a balanced tournament is not possible with n > 6 teams. Then we
give an example of a balanced tournament for n = 5. This shows that 5 is the largest value
of n for which a balanced tournament with n teams exists.

Suppose that n > 6 and, towards a contradiction, that a balanced tournament with n teams
exists. We look at the first six teams, say teams A to F. Suppose that A plays against at
most two of these teams, say at most against B and C but not against D, E and F. Since
three matches have to be played among the quadruple A, D, E and F, the teams D, E and
F all have to play against one another. This is a contradiction with part (a).

We conclude that A has to play against at least three of the teams, for example B, C and
D. This gives three matches in the quadruple A, B, C, D, so B, C and D do not play any
matches between them. Because the quadruple B, C, D, E also has to play three matches,
E has to play against all of B, C and D. But now we find a contradiction in the quadruple
A, B, C, E: there are already four matches between these teams (A against B, A against C,
B against E, and C against E). Therefore a balanced tournament with n > 6 does not exist.
To make a tournament with five teams, imagine the teams are standing in a circle. Two
teams play against each other if they are standing next to each other in the circle. If we look
at any quadruple of teams, we see there are exactly three pairs of teams standing next to
each other in the circle. So the four teams plays three matches between them. We conclude
that 5 is the largest value of n for which a balanced tournament with n teams exists. [

2. Version for klas 6

In the solution for klas 5 & klas 4 and below this problem is solved in two steps. In part (a) it
is proven that in a balanced tournament with n > 5 teams, there are no three teams that all
play against one another in the tournament. This is then used in part (b) to prove that 5 is the
largest value of n for which a balanced tournament with n teams exists. O

3. Version for klas 5 & klas 4 and below

(a)

When the frog finished n jumps, it made 1 +24+3+---+n = %n(n + 1) steps in total. To
get back at 0, the frog must make the same number of steps to the left and the right. Thus,
the total number of steps must be even. This means that %n(n + 1) is even, and hence
n(n+1) is a multiple of four. This yields that n or n+ 1 must be a multiple of four, that is,
n is of the shape n = 4k — 1 or n = 4k. Potential values for n are 3,4,7,8,11,12,.... Now
we will show that for each of these values of n the frog can get back at 0 after n jumps.
We will prove this by induction. For n = 3 and n = 4, it is not hard to find a solution:
1+2—-3=0and 1—-2—-344=0. Now suppose that we can choose pluses and minuses
such that £1+2+---4+m = 0 for a certain integer m. Then we can also find a combination
of pluses and minuses such that £1 +2+--- £+ (m +4) = 0. Indeed:

+1+2+---+Fm+(m+1)—(m+2)—(m+3)+ (m+4)
=04+(m+1)—(m+2)—(m+3)+(m+4)
=1-2-3+4+4
= 0.



It follows that the frog can indeed get back to 0 after n jumps for each n of the shape
n =4k — 1 or n = 4k. O

(b) This problem actually consists of two variants on part (a), namely in the horizontal and
the vertical direction. We start by considering the vertical direction. The frog is making
jumps consisting of even numbers of steps. This is actually what was happening in part (a),
except that the jumps are twice as long. Hence, the frog can end up on the z-axis if the last
jump in the vertical direction consists of 8k — 2 or 8k steps. Now we have to investigate
whether the frog can also arrive back on the y-axis, and hence at the origin (0,0). The last
horizontal jump is one before or one after the last vertical jump, hence the last horizontal
jump must consist of 8k — 3, 8k — 1, or 8k + 1 steps.

We will investigate whether it is possible that +1+3 4 ---4+n = 0 for n of the shape 8k — 3,
8k — 1, or 8k + 1. To get back to the y-axis, the total number of horizontal steps must be
even. Because each jump consists of an odd number of steps, the frog must make an even
number of jumps in the horizontal direction. If the last horizontal jump is of the shape
n =8k — 3 or n = 8k + 1, then the total number of horizontal jumps is odd. This cannot
happen. For the remaining case n = 8k — 1, we will use induction to prove that this case is
possible.

Suppose that the last horizontal jump consists of 8k — 1 steps. We will show that we can put
pluses and minuses such that +14+3+---+(8k—1) =0. For k=1, we find 1-3—-5+7 = 0.
Suppose that £1 +3+--- £ (8§ — 1) =0 for a certain j > 1. Then

143+ 8 —1)+(8+1)—(8/+3)—(8j +5)+ (8 +7)=0+1-3-5+7=0

and we can choose pluses and minuses such that £1+3+--- 4+ (8(j 4+ 1) — 1) = 0. Now we
proved that we can put pluses and minuses such that £1 +3 4+ --- £ (8k — 1) = 0 for each
integer k.

We conclude that there are two possibilities for the frog to end at the origin (0,0). The
first is for n = 8k — 1: the second last jump consists of 8k — 2 vertical steps, and the last
jump consists of 8k — 1 horizontal steps. The second is n = 8k, then the second last jump
consists of 8k — 1 horizontal steps and the last jump consists of 8% vertical steps. (I

3. Version for klas 6

In the solution for klas 5 & klas 4 and below this problem is solved in two steps. In part (a), we
consider a frog that is jumping only on the (horizontal) line. The frog is making a jump of size 1
to the left or right, a jump of size 2 to the left or right, a jump of size 3 to the left or right, et
cetera. The solution shows for which n the frog can return to the number 0 after n jumps. This
is then used in part (b) to show for which n a frog jumping both horizontally and vertically, can
can return to the origin (0,0) after n jumps. O

4. Version for klas 4 & below

(a) We prove the similarity ACMD ~ AABC'. Since
BC and M D are parallel, we find that ZADM =
ZACB =90° and also ZAM D = ZABC'. Tt follows ¢
that AABC ~ AAMD. Because |AB| = 2|AM| we E
also have that |AC| = 2|AD| and thus |AD| = |DC. D
This implies the congruence AAMD = ACMD:
both triangles have a right angle at D and the two
adjacent sides have the same length. Now we have
that AABC ~ AAMD = ACMD, and so it holds
that ACMD ~ AABC. O

(b) We prove that ACME ~ AABD. From part (a) it follows that ZECM = ZDCM =
/CAB = ZDAB, and also that

[EC| _ 31DC| _ 3CA| _ |DA]
|ICM|  |CM|  |AB| |AB|




This implies that ACMFE ~ AABD: the triangles have one equal angle and the two
adjacent sides have the same ratio. .
(c) Let F be the intersection of BD en C'M. Since BD is perpendicular to CM we have that
/BFM =90°. So in the triangle ABFM we have that /BMF + /FBM = 90°. Because
of the similar triangles in part (b) we have /FBM = ZABD = /CMFE = /FME. It
follows that /BMF 4+ /FMFE = 90°, hence EM is perpendicular to AB. O

4. Version for klas 5 & klas 6
(a) In the solution for klas 4 and below this problem is solved in two steps. In part (a) it is proven
that ACM D ~ AABC. Then this is used in part (b) to show that ACME ~ AABD.
(b) This is the same as the solution to part (c) of the solution for klas 4 and below. O

5. Version for klas 4 & below

Suppose by contradiction that n is not prime. Now consider the greatest divisor d < n of n.
Then we can write n as de. Since n is not prime, we have d > 1 and hence also e < n. Now e
must satisfy e > 1 and e < d (because d is the greatest divisor satisfying d < n). Now d + 1 must
be a divisor of n 4 1. Moreover, d + 1 is a divisor of (d + 1)e = de + ¢ = n + e. This means that
d + 1 must also be a divisor of the difference n+e — (n+1) = e — 1. This, however, is impossible,
because e — 1 is a number between 1 and d — 1. Therefore, our assumption that n is not prime
must be false, and n must actually be a prime number. O

5. Version for klas 5 & klas 6
The solution for klas 5 & klas 6 is the same as the solution for klas 4 & below. O
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