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Introduction

The selection process for IMO 2021 started with the first round in January
2020, held at the participating schools. The paper consisted of eight multiple
choice questions and four open questions, to be solved within 2 hours. In
this first round 7928 students from 328 secondary schools participated.

The 944 best students were invited to the second round, which was held in
March at twelve universities in the country. This round contained five open
questions, and two problems for which the students had to give extensive
solutions and proofs. The contest lasted 2.5 hours.

The 128 best students were invited to the final round. Also some outstanding
participants in the Kangaroo math contest or the Pythagoras Olympiad
were invited. In total about 150 students were invited. They also received
an invitation to some training sessions at the universities, in order to prepare
them for their participation in the final round.

The final round in September contained five problems for which the students
had to give extensive solutions and proofs. They were allowed 3 hours for
this round. After the prizes had been awarded in the beginning of November,
the Dutch Mathematical Olympiad concluded its 59th edition 2020.

The 30 most outstanding candidates of the Dutch Mathematical Olympiad
2020 were invited to an intensive seven-month training programme. The
students met twice for a three-day training camp, three times for a single
day, and finally for a six-day training camp in the beginning of June. Also,
they worked on weekly problem sets under supervision of a personal trainer.

In February a team of four girls was chosen from the training group to repre-
sent the Netherlands at the EGMO in Georgia, from 9 until 15 April. At this
virutal event the Dutch team won one bronze medal. For more information
about the EGMO (including the 2021 paper), see www.egmo.org.

In March a selection test of 3.5 hours was held to determine the ten students
participating in the Benelux Mathematical Olympiad (BxMO), also a virtual
event held on 1 and 2 May. The Dutch team achieved an outstanding result:
three gold medals, two silver medals and three bronze medals. For more
information about the BxMO (including the 2021 paper), see www.bxmo.org.

In June the team for the International Mathematical Olympiad 2021 was
selected by three team selection tests on 2, 3 and 4 June, each lasting 4

1



hours. A seventh, young, promising student was selected to accompany
the team to the IMO as an observer C. The team had a training camp in
Egmond aan Zee from 10 until 18 July.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.
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Dutch delegation

The Dutch team for the virtual IMO 2021 consists of

� Jelle Bloemendaal (17 years old)

– bronze medal at BxMO 2019, silver medal at BxMO 2020 and
2021

– (virtual) observer C at IMO 2020

� Kevin van Dijk (17 years old)

– bronze medal at BxMO 2020, gold medal at BxMO 2021

– (virtual) observer C at IMO 2020

� Hylke Hoogeveen (16 years old)

– bronze medal at BxMO 2020, honourable mention at BxMO 2021

� Casper Madlener (16 years old)

– silver medal at BxMO 2020

– (virtual) observer C at IMO 2020

� Kees den Tex (17 years old)

– gold medal at BxMO 2021

� Thian Tromp (18 years old)

– bronze medal at BxMO 2020, silver medal at BxMO 2021

Also part of the IMO selection, but not officially part of the IMO team, is:

� Lars Pos (17 years old)

– bronze medal at BxMO 2021

The team is coached by

� Quintijn Puite (team leader), Eindhoven University of Technology

� Johan Konter (deputy leader), Stockholm University

� Ward van der Schoot (observer A), University of Cambridge
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First Round, January 2020

Problems

A-problems

1. Francisca has a square piece of paper whose sides
have length 10 cm. She also has a rectangular piece
of paper having the exact same area as the square
piece of paper. She puts the rectangle right on top
of the square, putting the left bottom corner of both
pieces of paper in the same spot. Exactly one quarter
of the square remains uncovered by the rectangle.
What is the length in centimetres of the long side of
the rectangle?

A) 12 B) 12 1
4 C) 12 1

2 D) 12 3
4 E) 13 1

3

2. Each of Kwik, Kwek, and Kwak is lying on two consecutive days of the week
and is telling the truth on the other five days. No two of them are lying
on the same day. Uncle Donald wants to know who of his nephews ate his
sweets. The three nephews know all too well who did it. On Sunday, Kwik
says that Kwek ate the sweets. On Monday, Kwik says that it actually was
not Kwek who ate the sweets, while Kwak claims that Kwik is innocent.
On Tuesday, however, Kwak says that it was Kwik who ate the sweets.
Who ate the sweets?

A) It was Kwik.

B) It was Kwek.

C) It was Kwak.

D) It was either Kwik or Kwek, but you cannot determine who of the
two.

E) It was either Kwik or Kwak, but you cannot determine who of the
two.

3. We consider numbers with two digits (the first digit cannot be 0). Such a
number is called vain if the sum of the two digits is greater than or equal
to the product of the two digits. For example, the number 36 is not vain,
as 3 + 6 is smaller than 3 · 6.
How many numbers with two digits are vain?

A) 17 B) 18 C) 26 D) 27 E) 37
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4.
6

15

12

4

A box measuring 4 dm by 15 dm is shoved against
the wall. On top of it, a second box, measuring 12
dm by 6 dm, is placed. A ladder exactly touches the
ground, the two boxes and the wall. See the figure
(which is not drawn to scale).
What is the length of the ladder in dm?

A) 30 B) 8
√

15 C) 31 D) 22
√

2 E) 18
√

3

5. On a 4×4 board, there are 16 grass hoppers, each on its own square. At a
certain time, each grass hopper jumps to an adjacent square: to the square
above, below, left, or right of its current square, but not diagonally and
not leaving the board.
What is the maximum number of squares that can be empty after the grass
hoppers have jumped?

A) 8 B) 9 C) 10 D) 11 E) 12

6. In the table below each of the three rows is a correct calculation (the symbol
÷ denotes division). Also each of the three columns (read from top to
bottom) is a correct calculation. However, the digits in the table have been
replaced by letters. Different letters represent different digits and no digits
are 0.

ABC − ADF = F
+ − −

ADD ÷ GC = C
= = =

CEF ÷ GD = D

Which digit does E represent?

A) 1 B) 3 C) 5 D) 7 E) 9
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7. We consider figures consisting of six squares whose
sides have length 1. The radius of such a figure is
the radius of the smallest circle containing the whole
figure. On the right, there is an example of a figure
with radius

√
5.

Which of the following five figures has the smallest radius?

A) A B) B C) C D) D E) E

A B C D E

8. Lieneke is making bracelets with beads. Each bracelet has six beads: two
white, two grey, and two black beads. Some bracelets look different on first
sight, but are actually not different: by turning or flipping the first one
over, it looks the same as the other one. For example, the following three
bracelets are the same.

How many really different bracelets can Lieneke make?

A) 10 B) 11 C) 12 D) 14 E) 15
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B-problems
The answer to each B-problem is a number.

1. By replacing each ∗ in the expression 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ · · · ∗ 2019 ∗ 2020 by a
+ or a − sign, we get a long calculation. Put the + and − signs in such
a way that the outcome is a positive number (greater than 0) which is as
small as possible.
What is this outcome?

2. Triangle ABC is subdivided into three isosceles triangles and a rhombus.
Note: the figure is not drawn to scale.

C

A

B

What is the size of angle C in degrees?

3. Annemiek and Bart each have a note on which they have written three
different positive integers. It appears that there is exactly one number that
is on both their notes. Moreover, if you add any two different numbers
from Annemiek’s note, you get one of the numbers on Bart’s note. One
of the numbers on Annemiek’s note is her favourite number, and if you
multiply it by 3, you get one of the numbers on Bart’s note. Bart’s note
contains the number 25, his favourite number.
What is Annemiek’s favourite number?

4. We consider rows of 2020 coins. Each coin is of denomination 1, 2, or
3. Between two coins of denomination 1, there is at least one other coin.
Between two coins of denomination 2, there are at least two other coins.
Between two coins of denomination 3, there are at least three other coins.
How many different rows of 2020 coins satisfy these conditions?
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Solutions

A-problems

1. E) 13 1
3 5. C) 10

2. C) It was Kwak. 6. E) 9

3. D) 27 7. B) B

4. A) 30 8. B) 11

B-problems

1. 2

2. 36

3. 5

4. 10
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Second Round, March 2020

Problems

B-problems
The answer to each B-problem is a number.

B1. The digit sum of a number is obtained by adding all digits of the number.
For example, the digit sum of 1303 is 1 + 3 + 0 + 3 = 7.
Find the smallest positive integer n for which both the digit sum of n and
the digit sum of n + 1 are divisible by 5.

B2.

A

H

J

F

G

E

I

B

D C

Rectangle ABCD is subdivided into four rectangles as in
the figure. The area of rectangle AEIG is 3, the area of
rectangle EBHI is 5, and the area of rectangle IHCF
is 12.
What is the area of the parallelogram AHJF?

B3. A square sheet of paper lying on the table is divided into 8×8 = 64 equal
squares. These squares are numbered from a1 to h8 as on a chess board
(see fig. 1). We now start folding, in such a way that square a1 always stays
in the same spot on the table. First we fold along the horizontal midline
(fig. 1). This will cause square a8 to fold on top of square a1. Then we fold
along the vertical midline (fig. 2). Next, we fold along the new horizontal
midline (fig. 3), et cetera. After folding six times, we have a small package
of paper in front of us (fig. 7) that we can consider as a stack of 64 square
pieces of paper.

a b c d e f g h
1
2
3
4
5
6
7
8

fig. 1

a b c d e f g h
1
2
3
4

fig. 2

a b c d
1
2
3
4

fig. 3

· · ·

a
1

fig. 7

The squares in this stack are numbered from bottom to top from 1 to 64.
So square a1 gets number 1.
Which number does square f6 get?
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B4. One hundred brownies (girl scouts) are sitting in a big circle around the
camp fire. Each brownie has one or more chestnuts and no two brownies
have the same number of chestnuts. Each brownie divides her number of
chestnuts by the number of chestnuts of her right neighbour and writes
down the remainder on a green piece of paper. Each brownie also divides
her number by the number of chestnuts of her left neighbour and writes
down the remainder on a red piece of paper. For example, if Anja has 23
chestnuts and her right neighbour Bregje has 5, then Anja writes 3 on her
green piece of paper and Bregje writes 5 on her red piece of paper.

If the number of distinct remainders on the 100 green pieces of paper equals
2, what is the smallest possible number of distinct remainders on the 100
red pieces of paper?

B5. Given is the sequence of numbers a0, a1, a2, . . . , a2020 with a0 = 0. Further-
more, the following holds for every k = 1, 2, . . . , 2020:

ak =

{
ak−1 · k if k is divisible by 8,

ak−1 + k if k is not divisible by 8.

What are the last two digits of a2020?
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C-problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

C1. Given a positive integer n, we denote by n! (‘n factorial’) the number we get
if we multiply all integers from 1 to n. For example: 5! = 1 ·2 ·3 ·4 ·5 = 120.

(a) Determine all integers n with 1 ≤ n ≤ 100 for which n! · (n + 1)! is a
perfect square. Also, prove that you have found all solutions n.

(b) Prove that no positive integer n exists such that n! · (n+ 1)! · (n+ 2)! ·
(n + 3)! is a perfect square.

C2. Three consecutive vertices A, B, and C of a regular octagon (8-gon) are the
centres of circles that pass through neighbouring vertices of the octagon.
The intersection points P , Q, and R of the three circles form a triangle
(see figure).

B

A C

Q
P
R

B

A C

Q

P

R

Prove that triangle PQR is equilateral.
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Solutions

B-problems

1. 49999

2. 24 1
5

3. 43

4. 100

5. 02

C-problems

C1. (a) We observe that (n+1)! = (n+1) ·n!, and therefore that n! · (n+1)! =
(n!)2 · (n + 1). That product is a perfect square if and only if n + 1 is
a perfect square, since (n!)2 is a perfect square. For 1 ≤ n ≤ 100 this
is the case for n = 3, 8, 15, 24, 35, 48, 63, 80, 99 (perfect squares minus
one that are below 100). �

(b) We rewrite the product n! · (n + 1)! · (n + 2)! · (n + 3)! as follows:

(n!)2 · (n+ 1) · (n+ 2)! · (n+ 3)! = (n!)2 · (n+ 1) · ((n+ 2)!)2 · (n+ 3).

Since (n!)2 and ((n+ 2)!)2 are both perfect squares, the above product
is a perfect square if and only if (n + 1)(n + 3) is a perfect square.
However, (n + 1)(n + 3) cannot be a perfect square. Indeed, suppose
that (n + 1)(n + 3) = k2 were a perfect square. Since (n + 1)2 <
(n+1)(n+3) < (n+3)2 we would have n+1 < k < n+3, so k = n+2.
This is impossible because (n + 1)(n + 3) = (n + 2)2 − 1, which is not
equal to (n + 2)2. �

C2. An octagon can be subdivided into six triangles (see figure on the left).
Together, the angles of those six triangles add up to the same number of
degrees as the eight angles of the octagon. Since the angles of any triangle
add up to 180 degrees, this means that the eight angles of the octagon add
up to 6 · 180◦ = 1080◦. Hence, each of the angles of the regular octagon is
1
8 · 1080◦ = 135◦.
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We now consider the figure from the problem statement (see figure on the
right). Line segment BP bisects angle ABC, so ∠ABP = ∠PBC = 67 1

2

◦
.

Since triangles ABP and BCP are isosceles (as |AB| = |AP | and |BC| =
|CP |), we also have ∠APB = ∠BPC = 67 1

2

◦
and ∠BAP = ∠BCP =

180◦ − 135◦ = 45◦.

In triangles ABQ and BCR all sides have the same length. These triangles
are therefore equilateral and all angles are 60◦. From this, we deduce that
∠PAQ = ∠BAQ− ∠BAP = 15◦. In the same way, we find ∠PCR = 15◦.
Furthermore, triangles PAQ and PCR are isosceles (since |AP | = |AQ|
and |CP | = |CR|), so ∠APQ = 1

2 (180◦ − 15◦) = 82 1
2

◦
and ∠CPR = 82 1

2

◦
.

By mirror symmetry, PQ and PR have the same length, so PQR is an
isosceles triangle with apex P . We have already determined all angles at
P , except ∠QPR. We deduce that

∠QPR = 360◦ − ∠APQ− ∠APB − ∠BPC − ∠CPR

= 360◦ − 2 · 67 1
2

◦ − 2 · 82 1
2

◦
= 60◦.

From this and the fact that PQR is isosceles, we directly conclude that
PQR is equilateral. �

B

A C

Q

P

R
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Final Round, September 2020

Problems

1.
1 2

3

45

67

8

9

Daan distributes the numbers 1 to 9 over the nine squares
of a 3×3-table (each square receives exactly one number).
Then, in each row, Daan circles the median number (the
number that is neither the smallest nor the largest of
the three). For example, if the numbers 8, 1, and 2 are
in one row, he circles the number 2. He does the same for each column and
each of the two diagonals. If a number is already circled, he does not circle
it again.

He calls the result of this process a median table. Above, you can see a
median table that has 5 circled numbers.

(a) What is the smallest possible number of circled numbers in a median
table?
Prove that a smaller number is not possible and give an example in
which a minimum number of numbers is circled.

(b) What is the largest possible number of circled numbers in a median
table?
Prove that a larger number is not possible and give an example in
which a maximum number of numbers is circled.

2. For a given value t, we consider number sequences a1, a2, a3, . . . such that

an+1 =
an + t

an + 1
for all n ≥ 1.

(a) Suppose that t = 2. Determine all starting values a1 > 0 such that
4
3 ≤ an ≤ 3

2 holds for all n ≥ 2.

(b) Suppose that t = −3. Investigate whether a2020 = a1 for all starting
values a1 different from −1 and 1.

14



3. Given is a parallelogram ABCD with ∠A < 90◦ and |AB| < |BC|. The
angular bisector of angle A intersects side BC in M and intersects the
extension of DC in N . Point O is the centre of the circle through M , C,
and N .
Prove that ∠OBC = ∠ODC.

A B

CD

M

N

O

4. Determine all pairs of integers (x, y) such that 2xy is a perfect square and
x2 + y2 is a prime number.

5. Sabine has a very large collection of shells. She decides to give part of her
collection to her sister.

On the first day, she lines up all her shells. She takes the shells that are in
a position that is a perfect square (the first, fourth, ninth, sixteenth, etc.
shell), and gives them to her sister. On the second day, she lines up her
remaining shells. Again, she takes the shells that are in a position that is a
perfect square, and gives them to her sister. She repeats this process every
day.

The 27th day is the first day that she ends up with fewer than 1000 shells.
The 28th day she ends up with a number of shells that is a perfect square
for the tenth time.
What are the possible numbers of shells that Sabine could have had in the
very beginning?

15



Solutions

1. (a) The smallest possible number of circled numbers is 3. Fewer than 3
is not possible since in each row at least one number is circled (and
these are three different numbers).
On the right, a median table is shown in which only 3
numbers are circled. In the rows, the numbers 7, 5, 3 are
circled, in the columns the numbers 3, 5, 7, and on the
diagonals the numbers 5 and 5. Together, these are three
different numbers: 3, 5, and 7.

3 1 6

2 5 8

4 9 7

(b) The largest possible number of circled numbers is 7. More than 7 is
not possible, since the numbers 9 and 1 are never circled, hence no
more than 9− 2 = 7 numbers are circled.
On the right, a median table is shown in which 7 numbers
are circled. In the rows, the numbers 2, 6, 8 are circled,
in the columns the numbers 7, 5, 3, and on the diagonals
the numbers 4 and 5. Together, these are the numbers
2, 3, 4, 5, 6, 7, 8.

8 9 3

7 5 6

4 1 2

2. (a) First, we determine for what starting values a1 > 0 the inequalities
4
3 ≤ a2 ≤ 3

2 hold. Then, we will prove that for those starting values,
the inequalities 4

3 ≤ an ≤ 3
2 are also valid for all n ≥ 2.

First, we observe that a2 = a1+2
a1+1 and that the denominator, a1 + 1, is

positive (since a1 > 0). The inequality

4

3
≤ a2 =

a1 + 2

a1 + 1
≤ 3

2
,

is therefore equivalent to the inequality

4
3 (a1 + 1) ≤ a1 + 2 ≤ 3

2 (a1 + 1),

as we can multiply all parts in the inequality by the positive number
a1 + 1. Subtracting a1 + 2 from all parts of the inequality, we see that
this is equivalent to

1
3a1 − 2

3 ≤ 0 ≤ 1
2a1 − 1

2 .

We therefore need to have 1
3a1 ≤ 2

3 (i.e. a1 ≤ 2), and 1
2 ≤

1
2a1 (i.e.

1 ≤ a1). The starting value a1 must therefore satisfy 1 ≤ a1 ≤ 2.

Now suppose that 1 ≤ a1 ≤ 2, so that a2 satisfies 4
3 ≤ a2 ≤ 3

2 . Looking

at a3, we see that a3 = a2+2
a2+1 . That is the same expression as for a2,
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only with a1 replaced by a2. Since a2 also satisfies 1 ≤ a2 ≤ 2, the
same argument now shows that 4

3 ≤ a3 ≤ 3
2 .

We can repeat the same argument to show this for a4, a5, etcetera.
Hence, we find that 4

3 ≤ an ≤ 3
2 holds for all n ≥ 2. The formal proof

is done using induction: the induction basis n = 2 has been shown
above. For the induction step, see the solution of part (b) of the
version for klas 5 & klas 4 and below. The result is that all inequalities
hold if and only if 1 ≤ a1 ≤ 2.

(b) Let’s start by computing the first few numbers of the sequence in
terms of a1. We see that

a2 =
a1 − 3

a1 + 1

and

a3 =
a2 − 3

a2 + 1
=

a1−3
a1+1 − 3
a1−3
a1+1 + 1

=
a1 − 3− 3(a1 + 1)

a1 − 3 + (a1 + 1)

=
−2a1 − 6

2a1 − 2
=
−a1 − 3

a1 − 1
.

Here, it is important that we do not divide by zero, that is, a1 6= −1
and a2 6= −1. The first inequality follows directly from the assumption.
For the second inequality we consider when a2 = −1 holds. This is
the case if and only if a1 − 3 = −(a1 + 1), if and only if a1 = 1. Since
we assumed that a1 6= 1, we see that a2 6= −1. The next number in
the sequence is

a4 =
a3 − 3

a3 + 1
=
−a1−3
a1−1 − 3
−a1−3
a1−1 + 1

=
−a1 − 3− 3(a1 − 1)

−a1 − 3 + (a1 − 1)
=
−4a1

−4
= a1.

Again, we are not dividing by zero since a3 = −1 only holds when
−a1 − 3 = −a1 + 1, which is never the case.

We see that a4 = a1. Since an+1 only depends on an, we see that
a5 = a2, a6 = a3, a7 = a4, et cetera. In other words: the sequence is
periodic with period 3, and we see that

a2020 = a2017 = a2014 = · · · = a4 = a1.

To conclude: indeed we have a2020 = a1 for all starting values a1

unequal to 1 and −1.

3. As an intermediate step, we first show that triangles OCM and OCN are
congruent. Since AD and BC are parallel, we have (F angles): ∠CMN =

17



∠DAM = 1
2∠DAB. Since DN and AB are parallel, we have (Z angles):

∠CNM = ∠NAB = 1
2∠DAB. It follows that ∠CMN = ∠CNM , so

triangle CMN is isosceles with apex C. We obtain |CM | = |CN |. Line
segments OC, ON , and OM are radii of the same circle, and therefore of
equal length. Triangles OCM and OCN are therefore congruent (three
pairs of equal sides).

To show that ∠OBC = ∠ODC, we will show that triangles OBC and
ODN are congruent. We will do this using the ZHZ-criterion. We will
show that ∠OND = ∠OCB, and |ON | = |OC|, and |DN | = |BC|.
The equality |ON | = |OC| follows since ON and OC are radii of the
same circle. In part (a), we saw triangles OCM and OCN are congruent.
Furthermore, these two triangles are isosceles (|OC| = |OM | and |OC| =
|ON |). Hence, the four base angles ∠ONC, ∠OCN , ∠OMC, and ∠OCM
are equal. We see that ∠OND = ∠OCB. The only thing we still need to
show is that |DN | = |BC|.
Observe that ∠BMA = ∠DAM (Z angles) and ∠DAM = ∠MAB (as AM
is the angular bisector of A). We find that ∠BMA = ∠MAB. Triangle
AMB is therefore isosceles and we have |AB| = |BM |. We previously
saw that |CM | = |CN |, and we also have |AB| = |CD| as ABCD is a
parallelogram. We therefore obtain

|DN | = |CD|+ |CN | = |AB|+ |CM | = |BM |+ |CM | = |BC|,

which concludes the proof.

4. We have 2xy = a2 for some nonnegative integer a, and x2 + y2 = p for
some prime number p.

Since a prime number is never a perfect square, we see that x, y 6= 0. Since
2xy is a perfect square, it follows that x and y must both be positive, or
both be negative. If (x, y) is a solution, then so is (−x,−y). Therefore, we
may for now assume that x and y are positive, and at the end, add for each
solution (x, y) the pair (−x,−y) to the list of solutions.

Combining 2xy = a2 and x2+y2 = p yields (x+y)2 = x2+y2+2xy = p+a2.
By bringing a2 to the other side, we find

p = (x + y)2 − a2 = (x + y + a)(x + y − a).

Since x + y + a is positive, also x + y − a must be positive. The prime
number p can be written as a product of two positive integers in only two
ways: 1 · p and p · 1. Since x + y + a ≥ x + y − a, we obtain x + y + a = p
and x + y − a = 1.

18



Adding these two equations, we get 2x + 2y = p + 1. We also know that
x2 + y2 + 1 = p + 1, so 2x + 2y = x2 + y2 + 1. By bringing all terms to the
right-hand side and adding 1 to both sides, we obtain

1 = x2 + y2 − 2x− 2y + 2 = (x− 1)2 + (y − 1)2.

We now have two perfect squares that add up to 1. This implies that one
of the squares is 0 and the other is 1. So (x− 1)2 = 0 and (y − 1)2 = 1, or
(x− 1)2 = 1 and (y− 1)2 = 0. As x and y are positive, we find two possible
solutions: x = 1 and y = 2, or x = 2 and y = 1. In both cases 2xy = 4 is a
perfect square and x2 + y2 = 5 is a prime number. It follows that both are
indeed solutions.

Adding the solutions obtained by replacing (x, y) by (−x,−y), we obtain a
total of four solutions (x, y), namely

(1, 2), (2, 1), (−1,−2), (−2,−1).

5. Suppose that on a given day, Sabine is left with n2 shells, where n > 1.
Then the next day, she will give n shells to her sister and will be left with
n2 − n shells. This is more than (n− 1)2, since

(n− 1)2 = n2 − 2n + 1 = (n2 − n)− (n− 1) < n2 − n

as n > 1. The next day, she therefore gives n− 1 shells to her sister and is
left with n2 − n− (n− 1) = (n− 1)2 shells, again a perfect square. We see
that the numbers of shells that Sabine is left with are alternately a perfect
square and a number that is not a perfect square.

Let d be the first day that Sabine is left with a number of shells that is
a perfect square, say n2 shells. Then days d + 2, d + 4, . . . , d + 18 are the
second to tenth day that the remaining number of shells is a perfect square
(namely (n−1)2, (n−2)2, . . . , (n−9)2 shells). We conclude that d+18 = 28,
and hence d = 10.

On day 26 the number of remaining shells is at least 1000, but on days 27
and 28 this number is less than 1000. We see that (n−9)2 < 1000 ≤ (n−8)2.
As 312 < 1000 ≤ 322, we see that n− 8 = 32, and hence n = 40. We find
that day 10 is the first day that the number of remaining shells is a perfect
square, and that this number is 402.

In the remainder of the proof, we will use the following observation.

Observation. On any day, starting with more shells, means that Sabine
will have more (or just as many) shells left after giving shells to her sister.
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Indeed, suppose that Sabine starts the day with x shells, say n2 ≤ x <
(n + 1)2. After giving away shells, she will be left with x− n shells. If she
had started with x + 1 shells instead of x, she would have been left with
x + 1− n > x− n or x + 1− (n + 1) = x− n shells.

Let x be the number of shells remaining on day 8. The obvious guess
x = 412 = 1681 is incorrect as x cannot be a perfect square. We therefore
try x = 412− 2, x = 412− 1, and x = 412 + 1. The table shows the number
of shells remaining on day 8, 9, and 10.

day 8 day 9 day 10
412 − 2 = 1679 1679− 40 = 1639 1639− 40 = 1599
412 − 1 = 1680 1680− 40 = 1640 1640− 40 = 1600
412 + 1 = 1682 1682− 41 = 1641 1641− 40 = 1601

We see that the case x = 1679 is ruled out because it would imply that
fewer than 402 = 1600 shells are left on day 10. By the above observation,
this also rules out the case x < 1679. The case x = 1682 is ruled out
because it would imply that more than 402 shells will be left on day 10.
Hence, also x > 1682 is ruled out. The number of shells left on day 8 must
therefore be 412 − 1.

To follow the pattern back in time, we consider the case that the number
of remaining shells is just shy of a perfect square. Suppose that on a
given day the number of remaining shells is n2 − a, where 1 ≤ a < n.
Then the following day, the number of remaining shells is n2 − a− (n− 1).
Since a < n, we have n2 − a − (n − 1) > n2 − n − (n − 1) = (n − 1)2.
The day after that, the number of remaining shells must therefore be
n2 − a− (n− 1)− (n− 1) = (n− 1)2 − (a− 1).

So if Sabine originally had 452 − 5 shells, then the number of remaining
shells on days 2, 4, 6, and 8 are 442 − 4, 432 − 3, 422 − 2, and 412 − 1,
respectively. This gives us a solution.

If Sabine originally had 452 − 4 shells, then she would be left with too
many shells on day 8, namely 412 − 0. The original number of shells could
therefore not have been 452 − 4 or more.

If Sabine originally had 452 − 6 shells, then she would be left with too
few shells on day 8, namely 412 − 2. The original number of shells could
therefore not have been 452 − 6 or fewer.

We conclude that the only possibility is that Sabine started with a collection
of 452 − 5 = 2020 shells.
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BxMO Team Selection Test, March 2021

Problems

1. Let ABCD be a cyclic quadrilateral with |AB| = |BC|. Point E lies on the
arc CD which does not contain A and B. The intersection of BE and CD
is denoted by P , the intersection of AE and BD is denoted by Q. Prove
that PQ ‖ AC.

2. Determine all triples (x, y, z) of real numbers satisfying:

x2 − yz = |y − z|+ 1,

y2 − zx = |z − x|+ 1,

z2 − xy = |x− y|+ 1.

3. Let p be a prime number greater than 2. Patricia wants to assign 7 not
necessarily distinct numbers of {1, 2, . . . , p} to the black dots in the figure
below, in such a way that the product of three numbers on a line or circle
always gives the same remainder upon divison by p.

(a) Suppose Patricia is using the number p at least once. How often does
she need to use the number p at least?

(b) Suppose that Patricia does not use the number p. In how many ways
can she assign the numbers? (Two ways are considered to be different
if to at least one black dot distinct numbers have been assigned. The
figure is not being turned or mirrored.)

4. Jesse and Tjeerd are playing a game. Jesse has n ≥ 2 stones. There are
two boxes: in the black box there is space for half of the stones (rounded
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down) and in the white box there is space for half of the stones (rounded
up). Jesse and Tjeerd alternate turns, with Jesse as first player. In his
turn, Jesse takes one new stone, writes a positive real number on the stone
and puts it in one of the boxes which is not full yet. Tjeerd can see all
the numbers on the stones in each of the boxes and is allowed to move one
stone of his choice to the other box, if that other box is not full yet, but he
is also allowed to choose to do nothing. The game stops when both boxes
are full. If the total value of the stones in the black box is greater than
the total value of the stones in the white box, Jesse wins; otherwise Tjeerd
wins. Determine for each n ≥ 2 who can always win this game (and give a
winning strategy).

5. A triangle ABC has the property that |AB| + |AC| = 3|BC|. Let T be
the point on line segment AC satisfying |AC| = 4|AT |. Let K and L be
points on the interior of line segments AB and AC, respectively, such that
KL ‖ BC, and KL is tangent to the incircle of 4ABC. Let S be the

intersection of BT and KL. Determine the ratio |SL|
|KL| .
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Solutions

1. Because |AB| = |BC|, we have ∠AEB = ∠BDC, hence ∠QEP =
∠AEB = ∠BDC = ∠QDP , which yields that QPED is a cyclic quadri-
lateral. Therefore, ∠QPD = ∠QED = ∠AED = ∠ACD. From this, we
get that QP and AC are parallel. �

A C

D

B

E

P
Q

2. The system of equations is symmetric: if you swap x and y, for example,
then the third equation stays the same and the first two equations are
swapped. Hence, we can assume without loss of generality that x ≥ y ≥ z.
Then the system of equations becomes:

x2 − yz = y − z + 1,

y2 − zx = x− z + 1,

z2 − xy = x− y + 1.

Subtracting the second equation from the first, we obtain x2−y2+z(x−y) =
y − x, or (x− y)(x + y + z + 1) = 0. This yields x = y or x + y + z = −1.
Subtracting the third equation from the second, we obtain y2−z2+x(y−z) =
y − z, or (y − z)(y + z + x− 1) = 0. This yields y = z or x + y + z = 1.

We now distinguish two cases: x = y and x 6= y. In the first case, we have
y 6= z, as otherwise we would have x = y = z for which the first equation
becomes 0 = 1, a contradiction. Now it follows that x + y + z = 1, or
2x + z = 1. Substituting y = x and z = 1− 2x in the first equation yields
x2 − x(1− 2x) = x− (1− 2x) + 1, which can be simplified to 3x2 − x = 3x,
or 3x2 = 4x. We get x = 0 or x = 4

3 . With x = 0, we find y = 0, z = 1,
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but does not satisfy our assumption x ≥ y ≥ z. Thus, the only remaining
possibility is x = 4

3 , which gives the triple ( 4
3 ,

4
3 ,−

5
3 ). We verify that this

is indeed a solution.

Now consider the case x 6= y. Then we have x + y + z = −1, hence we
cannot have x + y + z = 1, and we see that y = z. Now x + y + z = −1
yields x + 2z = −1, hence x = −1 − 2z. Now the first equality becomes
(−1− 2z)2− z2 = 1, which can be simplified to 3z2 + 4z = 0. From this, we
conclude that z = 0 or z = − 4

3 . With z = 0, we find y = 0, x = −1, which
does not satisfy our assumption x ≥ y ≥ z. Hence, the only remaining
possibility is z = − 4

3 , and this gives rise to the triple ( 5
3 ,−

4
3 ,−

4
3 ). We

verify that this is indeed a solution.

By also considering the permutations of these two solutions, we find all
six solutions: ( 4

3 ,
4
3 ,−

5
3 ), ( 4

3 ,−
5
3 ,

4
3 ), (− 5

3 ,
4
3 ,

4
3 ), ( 5

3 ,−
4
3 ,−

4
3 ), (− 4

3 ,
5
3 ,−

4
3 ),

and (− 4
3 ,−

4
3 ,

5
3 ). �

3. (a) From now on, with ‘lines’ we mean the six lines and the circle. As soon
as the number p is used somewhere, there is a ‘line’ whose product
is divisible by p, and hence has remainder 0 upon division by p. All
‘lines’ must give remainder 0 in that case, hence all ‘lines’ contain at
least one p. This can be achieved by assigning the number p to the
bottom three dots. Suppose that it is already possible with at most
two times the number p. Each dot is lying on exactly three ‘lines’,
hence there are at most six ‘lines’ containing a p. There are seven
‘lines’ in total, however, hence this is impossible. We conclude that
she needs the number p at least three times in total.

(b) Denote the bottom three numbers from left to right by a, b, and c.
Denote the number in the middle on the left side of the triangle by d.
Now we can compute all numbers modulo p; note that all numbers are
invertible modulo p because p itself does not appear, and p is prime.
The bottom line has product abc. The left side also needs to have this
product, hence the top number in the triangle must be congruent to
abc(ad)−1 = bcd−1 modulo p. If we consider the line from the right
bottom to the left middle, we see that the middle number must be
congruent to abc(cd)−1 = abd−1. By considering the circle, we find
the number in the middle on the right side: abc(bd)−1 = acd−1.

On the right side, we now get the equation bcd−1 · acd−1 · c ≡ abc
mod p, hence c2 ≡ d2 mod p. Similarly, the vertical line yields b2 ≡
d2, and the line from the left bottom to the right middle yields a2 ≡ d2

mod p. We conclude that the numbers a, b, c, and d all must have
the same square. From x2 ≡ y2 we obtain (x− y)(x + y) ≡ 0 mod p,
hence p | x − y or p | x + y, because p is prime. Therefore, we have
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x ≡ y or x ≡ −y. These are two possibilities, because if y ≡ −y
were to hold, then 2y ≡ 0, hence p | 2y, hence p | y since p > 2; a
contradiction. Thus the numbers b, c, and d are all congruent to a or
−a. If these conditions are met, then we do have a2 ≡ b2 ≡ c2 ≡ d2

and from the preceding argument, we get that the product of the three
numbers on all six lines and the circle is congruent to abc.

There are p− 1 possibilities for the number a, and after choosing a,
there are 2 possibilities for each of the numbers b, c, and d. In total,
there are 8(p− 1) ways to assign the numbers. �

4. We will show that the capicity of the two boxes does not matter, as long
as the total capacity is n (and at least 1 for each box). Jesse can always
win this game, and can do that by first playing the power 20 = 1 of two,
and then in each following turn the next power of two that is smaller or
greater. That means: if he played the numbers

2−i, 2−(i−1), . . . , 2−1, 20, 21, . . . , 2j−1, 2j

at a certain moment, he will play either 2−(i+1) or 2j+1 in his next turn.

By playing cleverly, Jesse can make sure that the greatest power of two
among the stones played so far is always contained in the black box. We
will prove this by induction. In his first move, he puts the stone with
value 20 in the black box and the claim is true; this is the base case of the
induction. When it is his turn again, and Tjeerd moved the greatest power
of two so far, which according to the induction hypothesis was contained
in the black box, to the white box, then the black box actually has a free
space, and Jesse can put a new greater power of two in there, and the claim
is true. If Tjeerd moved some other stone or did nothing, then the greatest
power of two so far is still in the black box, and Jesse can play a smaller
power of two; it does not matter where he puts it. Also in this case, the
claim is true. This proves the induction step, and the claim is proved.

Therefore, after playing the last stone, the greatest power of two is in the
black box. It is greater than the sum of all smaller powers of two played
(2j > 2j − 2−i = 2j−1 + 2j−2 + · · ·+ 2−(i−1) + 2−i), hence it is certainly
greater than the sum of the powers of two in the white box. Therefore, the
total value inside the black box is greater than the total value in the white
box. �
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5. Denote the radius of the incricle of 4ABC by r. Then the area of triangle
ABC is

1

2
|AB| · r +

1

2
|BC| · r +

1

2
|AC| = 1

2
r · (3|BC|+ |BC|) = 2r|BC|.

On the other hand, the area of ABC equals 1
2h|BC|, where h is the altidude

from A. Hence, h = 4r. Because the distance from KL to BC is exactly
2r, the distance from A to KL is also 2r. Triangles AKL and ABC are
similar, because KL ‖ BC, and the altitudes from A have lengths 2r and
4r, respectively, giving a multiplication factor of exactly 2. Hence, K is the
midpoint AB, and L is the midpoint of AC.

For the point T , we have |AC| = 4|AT |, hence |AT | = 1
4 |AC| = 1

2 |AL|,
hence T is the midpoint of AL. Now consider triangle ABL. In this triangle,
the segment BT is a median, because T is the midpoint of AL. Also LK
is a median as K is the midpoint AB. Their intersection point S is the

centroid, from which we get that |SL|
|KL| = 2

3 . �

A
B

C

K

L

T

D

S

26



IMO Team Selection Test 1, June 2021

Problems

1. The sequence a0, a1, a2, . . . of integers is defined by a0 = 3 and

an+1 − an = n(an − 1)

for all n ≥ 0. Determine all integers m ≥ 2 for which gcd(m, an) = 1 for
all n ≥ 0.

2. Find all quadruples (x1, x2, x3, x4) of real numbers which are solutions of
the following system of six equations:

x1 + x2 = x2
3 + x2

4 + 6x3x4,

x1 + x3 = x2
2 + x2

4 + 6x2x4,

x1 + x4 = x2
2 + x2

3 + 6x2x3,

x2 + x3 = x2
1 + x2

4 + 6x1x4,

x2 + x4 = x2
1 + x2

3 + 6x1x3,

x3 + x4 = x2
1 + x2

2 + 6x1x2.

3. Let ABC be an acute non-isosceles triangle with orthocentre H. Let O
be the circumcentre of triangle ABC, and let K be the circumcentre of
triangle AHO. Prove that the reflection of K in OH lies on BC.

4. On a rectangular board consisting of m× n squares (m,n ≥ 3), dominos
have been placed (2× 1- or 1× 2-tiles), not overlapping each other. Each
domino covers exactly two squares of the board. Suppose that the placement
of the dominos has the property that no extra domino can be placed on
the board, and the four corners of the board are not all empty. Prove that
at least 2

3 of the squares of the board is covered by dominos.
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Solutions

1. The sequence is given by the formula an = 2 · n! + 1 for n ≥ 0. (We use the
usual definition 0! = 1, which satisfies 1! = 1 · 0!, in the same way we have
n! = n · (n− 1)! for other positive integers n.) We will prove the equality
by induction. We have a0 = 3, which equals 2 · 0! + 1. Now suppose for
certain k ≥ 0 that ak = 2 · k! + 1, then

ak+1 = ak+k(ak−1) = 2 ·k!+1+k ·2 ·k! = 2 ·k! ·(1+k)+1 = 2 ·(k+1)!+1.

This finishes the induction.

We see that an is always odd, hence gcd(2, an) = 1 for all n. It follows also
that gcd(2i, an) = 1 for all i ≥ 1. Hence, m = 2i with i ≥ 1 satisfies the
condition. Now consider an m ≥ 2 which is not a power of two. Then m
has an odd prime divisor, say p. We will show that p is a divisor of ap−3.
By Wilson’s theorem, we have (p− 1)! ≡ −1 mod p. Hence,

2 · (p− 3)! ≡ 2 · (p− 1)! ·
(
(p− 2)(p− 1)

)−1

≡ 2 · −1 · (−2 · −1)−1 ≡ 2 · −1 · 2−1 ≡ −1 mod p.

So indeed we have ap−3 = 2 · (p− 3)! + 1 ≡ 0 mod p. We conclude that m
does not satisfy the condition. Hence, the only values of m satisfying the
condition are powers of two. �

2. Subtracting the second equation from the first yields x2 − x3 = x2
3 − x2

2 +
6x4(x3 − x2), which we can factor as 0 = (x3 − x2)(x3 + x2 + 1 + 6x4). We
see that x2 = x3 or x2 + x3 + 1 + 6x4 = 0. Similarly, we also have either
x2 = x3 or x2 + x3 + 1 + 6x1 = 0. Hence, if x2 6= x3, the second equality
must hold in both cases; subtracting one from the other, we obtain x1 = x4.
We conlude that either x2 = x3 or x1 = x4. Analogously, we get for each
permutation (i, j, k, l) of (1, 2, 3, 4) that either xi = xj or xk = xl.

We will prove that at least three of the xi must be equal. If all four are equal,
this is true of course. Otherwise, there are two unequal ones, say x1 6= x2

without loss of generality. Then we have x3 = x4. If also x1 = x3 holds,
then there are three equal elements. Otherwise, we have x1 6= x3, hence
x2 = x4 and we also get three equal elements. Up to order, the quadruple
(x1, x2, x3, x4) is thus equal to a quadruple of the shape (x, x, x, y), where
we could have that x = y.

Substituting this in the equations gives x+y = 8x2 and 2x = x2 +y2 + 6xy.
Adding these two equations: 3x + y = 9x2 + y2 + 6xy. The right hand
side can be factored as (3x + y)2. Defining s = 3x + y, the equation
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becomes s = s2, from which we get either s = 0 or s = 1. We have
s = 3x+ y = 2x+ (x+ y) = 2x+ 8x2. Hence, 8x2 + 2x = 0 or 8x2 + 2x = 1.

In the first case, we have x = 0 or x = − 1
4 . We find y = 0− 3x = 0 and

y = 0− 3x = 3
4 , respectively. In the second case, we get the factorisation

(4x− 1)(2x + 1) = 0, hence x = 1
4 or x = − 1

2 . We find y = 1− 3x = 1
4 or

y = 1− 3x = 5
2 , respectively.

Altogether, we found the following quadruples: (0, 0, 0, 0), (− 1
4 ,−

1
4 ,−

1
4 ,

3
4 ),

( 1
4 ,

1
4 ,

1
4 ,

1
4 ) and (− 1

2 ,−
1
2 ,−

1
2 ,

5
2 ), and permutations thereof. It is a simple

computation to verify that all these quadruples are indeed solutions to the
equations. �

O

A B

C

H

K

3. We consider the configuration as in the figure. Other configurations are
treated analogously. Denote by D the second intersection of AH with
the circumcircle of 4ABC. Denote by S the second intersection of the
circumcircles of ABC and AHO. (Because 4ABC is acute, both O and
H lie in the interior of ABC and also in the interior of the circumcircle,
hence D and S both exist.)

We have

∠OSH = ∠OAH = ∠OAD = ∠ODA = ∠ODH,

where we use that |OA| = |OD|. Moreover, we have

∠OHD = 180◦ − ∠OHA = 180◦ − ∠OSA = 180◦ − ∠OAS = ∠OHS,

where we use that |OA| = |OS|. Now we conclude that 4OHS ∼= 4OHD
(SAA). This yields that D and S are each others reflection images in OH.
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Therefore, if we reflect the circumcentre K of 4OHS in OH, we get the
circumcentre L of 4OHD. Now we must prove that L lies on BC.

Point D is the reflection of H in BC. This is a known fact, which we can
prove as follows: ∠DBC = ∠DAC = ∠HAC = 90◦ − ∠ACB = ∠HBC
and analogously ∠DCB = ∠HCB, hence4DBC ∼= 4HBC (ASA). Hence,
D is indeed the reflection of H in BC, from which we get that BC is the
perpendicular bisector of HD. Becuase L lies on the perpendicular bisector
of HD, we get that L lies on BC, which is what we wanted to prove. �

4. Assign each empty square to the domino directly right of this square (unless
the square is on the right edge of the board). Now suppose that two empty
squares are assigned to the same domino, then this domino must be placed
vertically and both squares left of this domino are empty. However, that
would mean that another domino could fit, which is a contradiction. Hence,
no two empty squares are assigned to the same domino.

The empty squares on the right edge of the board have not been assigned a
domino yet. We try to assign these squares to dominos that do not have
an empty square directly left of them (i.e. dominos which have not been
assigned yet). First suppose that we succeed in assigning all empty squares
on the right edge of the board in this way to different dominos. In that case,
we assigned each empty square to a domino, where no domino has been
assigned more than one square. Because each domino covers two squares of
the board, there are two covered squares for each empty square, and hence
at most 1

3 of the squares is uncovered. In this case, we are done.

Now we will show that this assignment always works. Let k be the number
of empty squares on the right edge, and ` the number of empty squares on
the left edge. The empty squares on the left edge cannot be adjacent, hence
there are at least `− 1 dominos on the left edge and these all do not have
an empty square left of them. If ` > k, then there are enough dominos on
the left edge to assign to all empty squares on the right edge. If ` < k, we
could turn everything around and assign all empty squares to the domino
left of them and we could also prove that at most 1

3 of the squares on the
board are uncovered. The only remaining situation is when ` = k and both
on the left and right exactly k− 1 dominos are on the edge. For both edges,
we have that there must be an empty square between each two dominos,
and there must also be empty squares in the corners. This, however, is
in contradiction with the condition that not all corners are empty. Hence,
this situation cannot occur. �
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IMO Team Selection Test 2, June 2021

Problems

1. Let Γ be the circumcircle of a triangle ABC and let D be a point on
segment BC. The circle that passes through B and D and is tangent to Γ
and the circle that passes through C and D and is tangent to Γ, intersect
at a point E 6= D. The line DE intersects Γ at two points, X and Y . Prove
that |EX| = |EY |.

2. Prickle and Sting are playing a game on an m × n-board, where m and
n are positive integers. They alternatingly take turns, and Prickle goes
first. Prickle must, during his turn, place a pawn on a square which doesn’t
contain a pawn yet. Sting must, during his turn, also place a pawn on a
square which doesn’t contain a pawn yet, but additionally, his pawn must
be placed in a square that is adjacent to the square in which Prickle placed
his pawn the previous turn.

Sting wins once the entire board is completely filled with pawns. Prickle
wins if Sting cannot place a pawn in his turn, while there is at least one
empty square on the board.

Determine for all pairs (m,n) of positive integers which of Prickle and Sting
has a winning strategy.

3. Show that for every positive integer n there exist positive integers a and b
with

n | 4a2 + 9b2 − 1.

4. Determine all positive integers n with the following property: for every
triple (a, b, c) of positive real numbers there exists a triple (k, `,m) of
non-negative integers such that ank, bn`, cnm are the lengths of sides of a
(non-degenerate) triangle.
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Solutions

A

B C

D

E

X

Y

1. We consider the configuration as in the figure, where E is at least as close
to B as it is to C. The proof in the case of the configuration in which this
is the other way around, is analogous.

Let O be the centre of Γ. The angle between the line BC and the com-
mon tangent in B is on the one hand, by the inscribed angle theorem
(tangent case), equal to ∠BED, and on the other hand equal to ∠BAC.
So ∠BED = ∠BAC. Analogously, we show that ∠CED = ∠BAC, so
∠BEC = ∠BED + ∠CED = 2∠BAC = ∠BOC, where we use the in-
scribed angle theorem to derive the last step. Therefore E lies on the circle
that passes through B, O, and C. If E = O, then we’re done, as |EX| and
|EY | then both are the radius of the circle.

So suppose that E 6= O, then in the configuration considered, BEOC
is a cyclic quadrilateral. Then ∠BEO = 180◦ − ∠BCO. In the isosceles
triangle BOC, we have ∠BCO = 90◦− 1

2∠BOC = 90◦∠BAC, so ∠BEO =
180◦−(90◦−∠BAC) = 90◦+∠BAC. Hence ∠DEO = ∠BEO−∠BED =
90◦ + ∠BAC − ∠BAC = 90◦. Therefore EO is perpendicular to DE and
therefore also perpendicular to chord XY , from which follows that E is the
midpoint of XY . We conclude that |EX| = |EY |. �

2. We use the convention that m is the number of rows, and that n is the
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number of columns. If m is even, then we pair the squares of the board as
follows: in every column we pair the top two squares, then squares 3 and 4,
etc. As the number of rows is even, this pairs the squares of every column
completely. Sting can use the following strategy: whenever Prickle places
a pawn into one of a pair of squares, Sting places a pawn into the other,
which is necessary adjacent to the pawn that Prickle just placed. After
each move of Sting, all pairs contain either zero or two pawns, so Sting
can always place a pawn according to this strategy. Therefore Sting can
make sure that the entire board is eventually completely filled with pawns,
so Sting wins. Analogously, if n is even, then Sting has a similar winning
strategy.

If m = n = 1, Sting wins after Prickle’s first move. If m = 1 and n = 3 (or
the other way around), Sting can place his first pawn on a square adjacent
to the square in which Prickle has just placed his; such an adjacent (empty)
square always exists. The board will then be completely filled after Prickle’s
next move, so Sting has a winning strategy in these cases as well.

Now consider the case m = n = 3. Prickle can follow the following strategy.
He places his first pawn in the centre square. Sting must place his pawn
either in the same row or in the same column. Without loss of generality,
we assume that Sting’s pawn is placed in the same column as that of Prickle.
Prickle then places a pawn in the remaining square in the middle column.
At that point, the left and right columns are completely empty. Sting must
place his pawn into one of these columns. Prickle then chooses any square
in the other column, all three squares of which are still empty. This forces
Sting to place a pawn in that column as well, as the middle column was
already completely filled. Now Prickle places a pawn in the only remaining
square of that column, after which Sting can no longer place a pawn, while
there are two empty squares remaining. Therefore Prickle has a winning
strategy if m = n = 3.

The remaining case is that m and n are both odd, and that at least one
of m and n is at least 5. We consider the case that n (the number of
columns) is at least 5; the other case is analogous. Prickle can follow the
following strategy. Prickle places his pawns into the centre column until it
is completely filled with pawns. When it is Prickle’s turn again, there is an
even number of pawns on the board, all in the three columns in the centre
of the board, of which at least the middle one is completely filled. The
first and the last column are completely empty. As there is an odd number
of squares remaining, either the area to the left of the middle column has
an odd number of empty squares remaining, or the area to the right has.
Prickle chooses the area which contains an odd number of empty squares,
and places his pawns there until that area is full. As the centre column is
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completely filled, Sting must also place all of his pawns in that area. As
this area contained an odd number of empty squares, Prickle is the last
player (to be able) to place a pawn in this area. Sting can no longer place a
pawn, while the other area contains a column of empty squares, so Prickle
wins. (Of course, if Sting runs out of moves earlier, Prickle also wins.)

We conclude that Prickle wins if m and n are odd and m ≥ 5, if m and n
are odd and n ≥ 5, and if m = n = 3. Sting wins in all other cases: if m
and n are both even, if m = n = 1, if m = 1 and n = 3, and if m = 3 and
n = 1. �

3. If n = 1, all choices of a and b are solutions. Now suppose that n > 1
and let p be a prime divisor of n. Let k be the number of factors of p
in n. We give a condition for a and b modulo pk which guarantees that
pk|4a2 +9b2−1. By doing this for every prime divisor of n, we get a system
of conditions for a and b modulo the various prime powers. Then, by the
Chinese remainder theorem, there exist a and b satisfying all conditions
simultaneously.

If p 6= 2, then we consider the condition that 2a ≡ 1 mod pk and b ≡ 0
mod pk. As 2 has a multiplicative inverse module pk, this condition can be
satisfied. We then have

4a2 + 9b2 − 1 = (2a)2 + 9b2 − 1 ≡ 12 + 9 · 0− 1 = 0 mod pk.

Therefore all a and b satisfying this condition are solutions.

If p = 2, then we consider the condition that a ≡ 0 mod 2k and 3b ≡ 1
mod 2k. As 3 has a multiplicative inverse modulo 2k, this condition can be
satisfied. We then have

4a2 + 9b2 − 1 = 4a2 + (3b)2 − 1 ≡ 4 · 0 + 12 − 1 = 0 mod 2k.

Therefore all a and b satisfying this condition are solutions. �

4. It is clear that n = 1 does not satisfy the property, as not every three
positive real numbers a, b, and c are the lengths of the sides of a triangle.

We first show that any n ≥ 5 cannot satisfy the property by considering
the triple (a, b, c) = (1, 2, 3). Suppose that there exist k, `,m such that
nk, 2n`, 3nm are the lengths of the sides of a triangle. As n 6= 2, 3, no three
of these are equal. By repeatedly removing common factors n if they exist,
we can and do assume that one of k, `,m is equal to 0. Suppose that the
other two of those three integers are positive, then their corresponding
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side lengths both are multiples of n. Their difference then is at least n,
while the third side has length of at most 3. This contradicts the triangle
inequality. Hence of k, `,m, at least two must be zero. The corresponding
two side lengths then sum to at most 5, so the third side must have length
less than 5. As n ≥ 5, this third side cannot have a factor n either, so
k, `,m are all equal to 0. However, then 1, 2, 3 should be the lengths of
the sides of a triangle, while 3 = 2 + 1. This is a contradiction. We deduce
that n ≥ 5 does not satisfy the property.

Now consider n = 2, 3, 4. We construct (k, `,m) as follows. Take a triple
(a, b, c). If its entries already are the lengths of the sides of a triangle, we
take k = ` = m = 0. Otherwise there exists a triangle inequality that is not
satisfied. Without loss of generality, we assume that a ≥ b + c. Multiply
the lesser of b and c with n. If the right hand side still isn’t larger than a,
then take the new summands, and again multiply the lesser of the two by
n. So: if a ≥ nib + njc, then we multiply the lesser of nib and njc by n,
and repeat if the inequality still holds. This process always stops at some
point, as there exists i such that ni > a.

Consider the i and j such a ≥ nib + njc, such that applying the process
makes the right hand side larger than a. We assume without loss of
generality that nib ≤ nic, so we have a < ni+1b + njc. We claim that we
can take (k, `,m) to be equal to either (0, i + 1, j) or (0, i + 1, j + 1).

By definition, we have a < ni+1b+njc, and we have njc < nib+njc ≤ a <
a+ni+1b. Therefore, if (0, i+1, j) doesn’t satisfy the property, then we must
have ni+1b ≥ a + njc. Moreover nib ≤ njc, so ni+1b ≤ nj+1c < a + nj+1c.
We also have a < ni+1b + nj+1c, so if (0, i + 1, j + 1) does not satisfy
the property, then we must have nj+1c ≥ a + ni+1b. We will derive a
contradiction in case both triples do not satisfy the property, i.e. in case
both ni+1b ≥ a + njc and nj+1c ≥ a + ni+1b.

Adding these inequalities, and subtracting ni+1b on both sides, yields
nj+1c ≥ 2a + njc, or equivalently (n− 1)njc ≥ 2a. Therefore

ni+1b ≥ a + njc ≥ a +
2a

n− 1
=
(

1 + 2
n−1

)
a,

from which follows that

a ≥ nib + njc ≥ 1
n

(
1 + 2

n−1

)
a + 2

n−1a =
(n− 1) + 2 + 2n

n(n− 1)
a =

3n + 1

n(n− 1)
a.

So 3n + 1 ≤ n(n− 1). For n = 2, 3, 4, this inequality reads 7 ≤ 2, 10 ≤ 6,
and 13 ≤ 12, all of which are false. This is a contradiction.

Hence n = 2, 3, 4 are precisely the values which satisfy the property. �
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IMO Team Selection Test 3, June 2021

Problems

1. Let m and n be positive integers with mn even. Jetze is going to cover
an m× n-board (with m rows and n columns) with domino tiles, in such
a way that every domino tile covers exactly two squares, domino tiles do
not protrude out of the board or overlap one another, and every square is
covered by a domino tile. Merlijn then is going to colour all domino tiles on
the board either red or blue. Determine the smallest non-negative integer
V (depending on m and n) such that Merlijn can always make sure that
in each row, the number of squares covered by a red domino tile and the
number of squares covered by a blue domino tile differ by at most V , no
matter in what way Jetze covers the board.

2. Let ABC be a right angled triangle with ∠C = 90◦ and let D be the foot of
the altitude from C. Let E be the centroid of triangle ACD and let F be
the centroid of triangle BCD. Let P be the point satisfying ∠CEP = 90◦

and |CP | = |AP |, and let Q be the point satisfying ∠CFQ = 90◦ and
|CQ| = |BQ|. Show that PQ passes through the centroid of triangle ABC.

3. Find all functions f : R→ R satisfying

f
(
x + yf(x + y)

)
= y2 + f(x)f(y)

for all x, y ∈ R.

4. Let p > 10 be a prime number. Show that there exist positive integers m
and n with m + n < p for which p is a divisor of 5m7n − 1.
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Solutions

1. First suppose that n is odd. Then we must have V ≥ 1, as the difference
must be odd. We show that V = 1 is always possible. Colour the vertical
domino tiles in the odd numbered columns red and the vertical domino
tiles in the even numbered columns blue. As in every row, every horizontal
domino tile covers a square in an even numbered column and one in an odd
numbered column, every row contains one more square covered by a red
domino tile than squares covered by a blue domino tile. Now colour the
horizontal domino tile in each row alternatingly blue and red (starting with
blue). If the number of horizontal domino tiles is even, then at the end,
the number of red squares will be one more than that of blue squares; if
the number of horizontal domino tiles is odd, then at the end, the number
of blue squares will be one more than that of red squares. The difference
will therefore always be equal to 1.

Now suppose that n ≡ 2 mod 4. Then we have V ≥ 2 if Jetze places
every domino tile horizontally; then every row contains an odd number of
horizontal domino tiles. We show that V = 2 is always possible. Use the
same strategy as in the odd case. After colouring the vertical domino tiles,
the numbers of red and blue squares are equal. If we alternatingly colour
the horizontal domino tiles in each row blue and red again, we see that in
the end, in every row the difference between the number of red and blue
squares is 0 or 2.

Finally, suppose that n ≡ 0 mod 4. We show that V = 0 is always possible.
Number the rows from top to bottom from 1 up to m, and let bi be the
number of vertical domino tiles of which the top square is in row i. By
induction on i, we easily show that bi is even, using the fact that a horizontal
domino tile always covers an even number of squares in a row. We now
colour the vertical domino tiles in rows i and i + 1 as follows: if bi ≡ 0
mod 4, we colour half of them red, and the other half blue, and if bi ≡ 2
mod 4 we colour two more domino tiles red than we colour blue if i is even,
and we colour two more domino tiles blue than we colour red if i is odd.
We show that we can now colour the horizontal domino tiles in each row k
in such a way that every row has the same number of red and blue squares.
If bk−1 ≡ bk ≡ 0 mod 4, then vertical domino tiles in row k cover the same
number of red squares as blue squares. Moreover, the number of horizontal
domino tiles in row k is even, so we can simply colour half of them red and
half of them blue. If bk−1 ≡ bk ≡ 2 mod 4, then vertical domino tiles in
row k again cover the same number of red squares as blue squares, since of
k − 1 and k, one is odd and one is even. Again, the number of horizontal
domino tiles in row k is even, so we can again simply colour half of them
red and half of them blue. If bk−1 6≡ bk mod 4, then the difference in the
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number of squares covered by red vertical domino tiles and blue vertical
ones is equal to 2. The number of horizontal domino tiles is odd, so we can
colour those in such a way that in the end, the number of red and blue
squares are equal.

Hence the minimal values for V are: V = 1 if n is odd, V = 2 if n ≡ 2
mod 4, and V = 0 if n ≡ 0 mod 4. �

A B

C

D

E

FZ

P

Q

2. Let M , N , R, S be the midpoints of line segments BC, CA, BD, AD. Let
Z be the centroid of 4ABC. Quadrilateral QFMC is cyclic as ∠QFC =
90◦ = ∠QMC. Note that therefore CQ is a diameter of the circumcircle of
QFMC. Analogously, we see that PNEC is a cyclic quadrilateral, with
diameter CP .

We show that Z also lies on the circumcircles of these cyclic quadrilaterals.
The similarity transforming triangle BCA into triangle BDC transforms
triangle CZM into DFR, as C is mapped to D, the centroid Z is mapped
to the centroid F , and the midpoint M of BC is mapped to the midpoint of
BD, which is R. So 4CZM ∼ 4DFR, in particular ∠CZM = ∠DFR =
∠CFM (opposite angles). Therefore Z lies on the circumcircle of the cyclic
quadrilateral QFMC. Analogously, we have ∠CZN = ∠DES = ∠CEN ,
from which follows that Z lies on the circumcircle of the cyclic quadrilateral
PNEC.

We can now show that Z lies on PQ. As CQ is a diameter of the circle
through Q, F , M , C, Z, we have ∠QZC = 90◦. As CP is a diameter of
the circle through P , N , E, Z, C, we also have ∠CZP = 90◦. Hence P , Z,
and Q are collinear. �
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3. Note that the function f(x) = 0 for all x does not satisfy the condition.
Hence there is some a with f(a) 6= 0. Substituting x = a and y = 0, we
get f(a) = f(a)f(0), so f(0) = 1. Substituting x = 1 and y = −1, we get
f
(
1− f(0)

)
= 1 + f(1)f(−1). As f(0) = 1, this reads 1 = 1 + f(1)f(−1),

so f(1) = 0 or f(−1) = 0. We consider these two cases separately.

First suppose that f(1) = 0. Substituting x = t and y = 1− t, and x = 1− t
and y = t then gives

f(t) = (1− t)2 + f(t)f(1− t),

f(1− t) = t2 + f(t)f(1− t).

Subtracting these two gives f(t) − f(1 − t) = (1 − t)2 − t2 = 1 − 2t, so
f(1− t) = f(t) + 2t− 1. Substituting this expression into the first of the
above two equations gives

f(t) = (1− t)2 + f(t)2 + (2t− 1)f(t),

or equivalently
f(t)2 + (2t− 2)f(t) + (1− t)2 = 0,

or equivalently,
(
f(t)− (1− t)

)2
= 0. Therefore f(t) = 1− t for all t.

We verify this function in the original equation: the left hand side is
1− (x + y(1− x− y)) = 1− (x + y − xy − y2) = 1− x− y + xy + y2, and
the right hand side is y2 + (1− x)(1− y) = y2 + 1− x− y + xy, which is
equal to the left hand side. Therefore the function f(x) = 1− x for all x is
a solution to the original equation.

Now suppose that f(−1) = 0. Substituting x = t and y = −1 − t, and
x = −1− t and y = t, then gives

f(t) = (−1− t)2 + f(t)f(−1− t),

f(−1− t) = t2 + f(t)f(−1− t).

Subtracting these two gives f(t)− f(−1− t) = (−1− t)2 − t2 = 1 + 2t, so
f(−1− t) = f(t)− 2t− 1. Substituting this expression into the first of the
above two equations gives

f(t) = (−1− t)2 + f(t)2 + (−2t− 1)f(t),

or equivalently
f(t)2 − (2t + 2)f(t) + (t + 1)2 = 0,

or equivalently,
(
f(t)− (t + 1)

)2
= 0. We deduce that f(t) = t + 1 for all t.
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We verify this function satisfies the original equation. The left hand side
is x + y(x + y + 1) + 1 = x + xy + y2 + y + 1 and the right hand side is
y2 +(x+1)(y+1) = y2 +xy+x+y+1, which is equal to the left hand side.
Hence the function f(x) = x + 1 for all x satisfies the original equation.

We conclude that there are exactly two solutions of the original equation:
f(x) = 1− x for all x, and f(x) = x + 1 for all x. �

4. By Fermat’s Little Theorem, we have ap−1 ≡ 1 mod p for all a such that
p - a. As p > 10, p is odd, so p− 1 is even. We have(

a
p−1
2 − 1

)(
a

p−1
2 + 1

)
= ap−1 − 1 ≡ 0 mod p.

So p | (a
p−1
2 − 1)(a

p−1
2 + 1), so p is a divisor of at least one of the factors.

Hence a
p−1
2 is congruent to 1 or −1 modulo p.

We apply this to a = 5 and a = 7. Note that p > 10, so p 6= 5, 7. If

5
p−1
2 ≡ 1 mod p and 7

p−1
2 ≡ 1 mod p, we choose m = n = p−1

2 , which

satisfy the condition. The same holds if 5
p−1
2 ≡ −1 mod p and 7

p−1
2 ≡ −1

mod p.

The remaining case is that one is congruent to 1 and the other is congruent

to −1. Assume that 5
p−1
2 ≡ 1 mod p and 7

p−1
2 ≡ −1 mod p. The case in

which it is the other way around is analogous.

If there exists an n such that 0 < n < p−1
2 and 7n ≡ 1 mod p, then we

choose this n and m = p−1
2 , which satisfy the condition. If not, then no

n such that p−1
2 < n < p − 1 and 7n ≡ 1 mod p can exist either, since

otherwise 7p−1−n ≡ 7p−1(7n)−1 ≡ 1 mod p, while 0 < p − 1 − n < p−1
2 ,

which is a contradiction. Moreover, no i, j such that 1 ≤ i < j ≤ p − 1
and 7i ≡ 7j mod p can exist, since otherwise 7j−i ≡ 1 mod p with 1 ≤
j − i < p− 1. Hence 7i assumes distinct values for 1 ≤ i ≤ p− 1 modulo
p, which are all non-zero. So 7i assumes all non-zero values modulo p for
1 ≤ i ≤ p− 1.

In particular, there exists an n such that 7n ≡ 5−1 mod p. Then n ≤ p−2,
since 7p−1 ≡ 1 6≡ 5−1 mod p. Choosing this n and m = 1 gives 7n · 5m ≡
5−1 · 5 ≡ 1 mod p.

Therefore it is always possible to find m and n satisfying the conditions. �
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